
www.manaraa.com

Simulation of Quantum Algorithms Over

Distributed Network Systems

A Thesis

Presented to the

School of Interdisciplinary Informatics

and the

Faculty of the Graduate College

University of Nebraska

In Partial Fulfillment

of the Requirements for the Degree

Masters of Science

University of Nebraska at Omaha

by

J. Joel vanBrandwijk

April 2016

Supervisory Committee:

Dr. Abhishek Parakh

Dr. William Mahoney

Dr. Mahadevan Subramaniam

www.manaraa.com

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

All rights reserved.

This work is protected against unauthorized copying under Title 17, United States Code
Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346

ProQuest 10100887

Published by ProQuest LLC (2016). Copyright of the Dissertation is held by the Author.

ProQuest Number: 10100887

www.manaraa.com

Abstract

Simulation of Quantum Algorithms Over Distributed

Network Systems

J. Joel vanBrandwijk, MS

University of Nebraska, 2016

Advisor: Dr. Abhishek Parakh

For students and researchers alike, the field of quantum computing is dif-

ficult to approach. The nature of quantum computing runs counter to the

intuitive framework applied to most other domains in the computer sciences.

Specialized quantum computing systems are not readily available if they exist

at all, making kinesthetic learning and experimentation difficult tasks.

The difficulty in providing tangible demonstrations of quantum computers

and algorithms provides the motivation for this thesis. In this project we devel-

oped a tool for simulating quantum algorithms, including entanglement based

algorithms. The resulting tool aims to empower the learner, stimulate research,

and enable experimentation.

The tool is capable of simulating quantum algorithms across distributed

network systems. Included in this requirement are demonstrations of quantum

teleportation as well as cryptographic algorithms using unentangled and entan-

gled qubits. This tool can be used to simulate various quantum cryptographic

algorithms and thus verify calculations regarding their comparative efficiency

and security.

The theoretical contributions of this thesis work include a new method for

implementing entanglement in a completely distributed manner and enabling

operations and measurements on them. No other existing simulator provides

this.

www.manaraa.com

ii

Copyright J. Joel vanBrandwijk, 2016

www.manaraa.com

iii

Dedication

To my Grandfather, Harold Heidrick, whom I never met but who sought to understand

his universe, and to my daughter, Osa Rose, that she will keep a sense of wonder.

www.manaraa.com

iv

Author’s Acknowledgement

Firstly, to Nicole, without whom little of what I do would be possible. You have

been patient and gracious through my long hours of work and studying, and removed

more worries than I think even you know.

To all the faculty in the Information Assurance department, from whom I have

learned much. Especially to Dr. Parakh, who has guided me as we explored deeper

into the subject of this work, and given to me a great wealth of knowledge about

secrets hidden from most of the world.

To my mother and father, who encouraged my learning and always pushed me

to ask more questions, and who gave me access to books and teachers when I asked

what they couldn’t answer.

www.manaraa.com

v

Table of Contents

Abstract . i

Copyright . ii

Dedication . iii

Author’s Acknowledgement . iv

Table of Contents . v

List of Figures . viii

List of Tables . x

1 Introduction 1

2 Quantum Information Representation 3

2.1 Quantum Fundamentals . 3

2.1.1 Representing Qubits . 4

2.1.2 Measurement & No-cloning 8

2.1.3 Entanglement . 10

2.2 Physical Implementations . 16

2.2.1 Ion Traps & Electron Spin . 16

2.2.2 Nuclear Magnetic Resonance 18

2.2.3 Photons . 19

www.manaraa.com

vi

3 Quantum Cryptography & Communication Protocols 23

3.1 Protocols . 23

3.1.1 BB84 . 23

3.1.2 E91 . 26

3.1.3 Kak06 . 27

3.1.4 Quantum Teleportation . 28

3.2 Error Detection & Correction . 31

3.2.1 Kraus Operators . 33

3.2.2 Amplitude Damping . 33

3.2.3 Bit- & Phase-Flip Errors . 35

3.2.4 Rotational Errors . 38

4 Quantum Simulation 42

4.1 Asynchronous Operations on Entangled Qubits 42

4.1.1 Linear Extension Operations 43

4.1.2 Asynchronous Operations . 44

4.2 QooSim Implementation Details . 48

4.2.1 Previous Work . 48

4.2.2 QooSim . 51

4.2.3 Major Structures . 52

4.2.4 Iteration 1 - Registers & Nodes 54

4.2.5 Iteration 2 - Registers & Qubits 57

4.2.6 Iteration 3 - Qubits & State Vectors 59

4.3 QooSim in Practice . 62

4.3.1 BB84 . 63

4.3.2 Kak06 . 69

www.manaraa.com

vii

5 Conclusions 72

5.1 Future Work . 74

Reference 75

A Source Code Listings 83

A.1 StateVector . 83

A.2 Teleportation Runnable . 93

A.3 Kak06 Runnable . 96

www.manaraa.com

viii

List of Figures

2.1 Bloch sphere representation of a qubit. 4

2.2 Bloch circle representation of a qubit. 5

2.3 Behavior of entangled qubits. 13

2.4 Magnetic field created by electron spin. 17

2.5 Polarization of photons passing through a filter. 20

3.1 BB84 encoding states. 24

3.2 Stages of encoding and decoding in Kak06. 28

3.3 Effects of errors on the bloch sphere representation of qubits. 32

4.1 Simulated entanglement through asynchronous operations. 45

4.2 Interaction between major components of QooSim. 53

4.3 Register & Node structures in iteration 1. 55

4.4 Entanglement structures in iteration 1. 56

4.5 Structure of state & vector classes in iteration 3. 59

4.6 BB84 efficiency vs an eavesdropper (scatter plot). 63

4.7 BB84 efficiency vs an eavesdropper (best fit). 63

4.8 BB84 efficiency vs amplitude damping (scatter plot). 64

4.9 BB84 efficiency vs an amplitude damping (best fit). 65

4.10 BB84 efficiency vs rotation . 66

www.manaraa.com

ix

4.11 BB84 efficiency vs rotation . 66

4.12 BB84 Efficiency against amplitude damping compared to eavesdropping. 67

4.13 BB84 Efficiency against amplitude damping compared to eavesdropping. 68

4.14 Kak06 efficiency vs rotation (scatter plot). 70

4.15 Kak06 efficiency vs rotation (best fit). 71

4.16 Kak06 efficiency vs amplitude damping (best fit). 71

www.manaraa.com

x

List of Tables

2.1 Quantum gate matrices. 8

3.1 Teleportation Transformations. 30

4.1 Efficiency of entanglement representations. 60

www.manaraa.com

1

Chapter 1

Introduction

Quantum computing refers to the use of quantum mechanics to construct a circuit or

machine which transforms or transmits data [2]. The field of quantum computation

holds many exciting promises for the field of information assurance. Shor’s algorithm

can break current state of the art cryptography [3]. But “What quantum computing

takes with one hand, it gives back with the other” [1] . Many quantum algorithms have

been developed to provide unbreakable encryption based on the laws of physics [3] [4].

Although much research has been done on quantum communication protocols, we are

still, in terms of sophistication and scale, at the very beginning of implementing

practical quantum networks.

At it’s base, quantum computing relies on a rudimentary understanding of quan-

tum mechanical principles such as superposition, no-cloning, measurement, and en-

tanglement. However, these topics run counter to classical knowledge about what a

computing machine should be and how it should behave. Where classical models de-

scribe information as a series of discrete bits in zeros and ones, quantum computing

instead has a single quantum bit, or qubit, represented by probabilities of zero or

one - while existing as both until measured. In classical models, bits can be copied

by reading and writing to memory, but with qubits, reading the quantum state is a

www.manaraa.com

2

violation of the laws of physics; the state is collapsed by measurement, thus losing

the quantum information.

In this thesis, we will first attempt to demystify some of the basics of quantum

computing, including methods for representing quantum bits, implications of mea-

surement and no-cloning, and entanglement in section 2.1. A brief discussion of some

of the mechanisms available as physical implementations for quantum computers fol-

lows in section 2.2. Section 3.1 discusses three widely known quantum encryption

protocols, as well as the concept of teleportation, which is useful for wide area quan-

tum networks. In section 3.2, we will examine some of the common causes for error

in quantum systems along with methods for detecting and correcting integrity prob-

lems. In this section, we have contributed research on the subject of rotational error

detection and correction.

The remaining chapters of the thesis are original work related to the theory,

design, implementation, and practical use of a simulator for quantum algorithms

across distributed network systems. One of the key problems with simulation of

quantum communication protocols is addressed in section 4.1.2, along with our novel

solution. Section 4.2 discusses the technical aspects of the QooSim system, including

comparison to previous works as well as a brief history of the evolution of the system.

Results and analysis from simulations run in QooSim are provided in section 4.3, and

this thesis concludes in chapter 5. Source code from some of the “iRunnable” objects

which implement quantum applications are provided in Appendix A.

www.manaraa.com

3

Chapter 2

Quantum Information

Representation

2.1 Quantum Fundamentals

Before one can meaningfully describe and investigate the simulation of quantum in-

formation processing, an understanding of some of the underlying quantum principles

is needed. The most basic unit of quantum computation is the quantum bit or qubit.

In classical computing, information is represented as a series of bits valued as ei-

ther a logical zero or one. These are discrete and deterministic values: an ON or

OFF switch. Quantum computing uses a representation of information similar to the

classical bit, but suspends the restrictions of discrete values. Quantum mechanics

allows that the universe is not a deterministic neighborhood, and that discrete val-

ues are mere observations of continuous phenomena. Quantum computing applies

quantum mechanics to information processing. Just as with classical bits, quantum

bits may have values of zero and one. However, quantum bits may also have a linear

combination, or “superposition” of states.

www.manaraa.com

4

2.1.1 Representing Qubits

Figure 2.1: Bloch sphere representation of a qubit.

Qubits can be manifested through a number of different physical phenomena,

some of which are described in section 2.2. However, it is useful to treat qubits as

abstract mathematical phenomena, to avoid dependence on a physical implementation

[24]. Single qubits are often envisioned as a point on the surface of a unit sphere,

known as a Bloch sphere. The logical values for zero and one, written as |0〉 and

|1〉, are pictured at the top and bottom pole of the z-axis on the sphere in figure 2.1,

respectively. The poles of the x-axis are labeled as |+〉 or |−〉, where as the poles of the

y-axis represent the phase of the qubit, labeled as i and −i. Information is encoded

onto a qubit through the process of rotation. In figure 2.1, the angle θ projects the

amplitude, while the angle given by φ projects the phase. The superposition of the

|0〉 and |1〉 states is described by the vector |ψ〉. The Bloch sphere is a useful tool

for representing the state of a single qubit and visualizing operations performed on

www.manaraa.com

5

that state. However, in the three-dimensional world, there does not exist an intuitive

representation for multiple qubits in non-trivial states [24].

When viewed on the Bloch sphere, the z-axis is referred to as the “computational”

or “rectilinear” basis. This basis equates to performing a measurement in the vertical

direction; or without rotation before measurement in the simulator. The x-axis is

referred to as the “diagonal” basis. The east and west poles of this basis are referred

to as |+〉 and |−〉, respectively. The rectilinear and diagonal basis can be exchanged

by a rotation of ±π/2 about the y-axis on the bloch sphere. A qubit at a pole position

in either of these bases is in a superposition with respect to the other two bases. This

is a critical component of the BB84 cryptographic protocol discussed in section 3.1.1.

Figure 2.2: Bloch circle representation of a qubit.

Stemming from the Bloch sphere method, a two-dimensional visualization is

available in the form shown in figure 2.2. In this form, the plane intersecting the z-

and x- axes, which are the computational and diagonal bases, respectively, is taken

to represent the whole system. Note that in this representation, angles are presented

at half the degree at which they would be on the sphere, owing to the flattening

www.manaraa.com

6

computation. The rectilinear and diagonal bases can be exchanged by a rotation of

±π/4 on the Bloch circle [20]. The utility of the circular representation is that the

“shadow” of a qubit’s vector on the circle correlates to its probability. That is, the

cos and sin of the angle can be visualized directly.

By convention, the probability of a qubit being measured in the state zero is given

as |α|2, where the complex number α = cos(θ/2). Similarly, the probability of one as

the outcome is given as |β|2 where β = sin(θ/2). Using the Bloch sphere model, since

sin2θ + cos2θ = 1 by the trigonometric identity, and the radius of the sphere is 1,

the point which represents the qubit in a pure state is always located on the surface

of the sphere. In section 3.2, error mechanisms will be introduced which distort the

shape of the sphere. There also exist what are known as “mixed” states for qubits,

in which the qubit would be at some point inside the sphere. However, discussion of

such states is outside the scope of this work, and the associated simulator does not

support these states. In fact, when a quantum system falls into a mixed state, the

simulator will re-normalize the associated vectors to return it to a pure state.

Most often, phase is ignored during calculations. This is because phase does not

impact measurement outcomes. Consider the case 1√
2

= α = β. Then the probability,

Pr of the states |0〉 and |1〉 are Pr(|0〉) = |α|2 = 1/2 = |β|2 = Pr(|1〉). There are some

conditions in which phase is relevant, most notably in the case of superdense coding.

However, for the remainder of this thesis, phase will be ignored unless specifically

noted.

A qubit is most commonly represented using one of two equivalent methods,

based on which is mathematically convenient. The first is known as “ket” notation,

and emulates polynomial equations. In ket notation, each possible state, |qi〉, is

associated with an amplitude,
√
Pr(|qi〉). For the generic system Q =

∑√
Pr(|qi〉)|qi〉

where Pr(|qi〉) is the probability for the state |qi〉, as in equations 2.1. The convention

is to use greek letters α and β for the probability amplitudes of the states |0〉 and |1〉.

www.manaraa.com

7

As seen in equation 2.2, more than one qubit can be represented by a single “ket”

notation equation. This is typically done by enumerating all possible states with

associated greek lettering. Ket notation is useful for shorthand notation of states, as

in equation 2.3, but has limited utility when applying gate operations to qubits.

|QA〉 = α|0〉+ β|1〉 (2.1)

|QAB〉 = α|00〉+ β|01〉+ γ|10〉+ δ|11〉 (2.2)

|QABCD〉 = α|0000〉+ β|1111〉 (2.3)

The second, more formal method for representing a qubit is through matrix

algebra. This representation is useful for calculation and proofs, more naturally

accommodating gate operations. The reason for the utility of this method is that

quantum logic gates and quantum channel errors can be represented as matrices

as well. For example, rotation can be represented by the product of a two-by-two

rotational gate matrix and the one-by-two matrix representing the qubit. Equations

2.4 and 2.5 demonstrate the application of rotation on a single qubit using matrix

algebra.

Ry(θ)|Q〉 =

 cos(θ/2) −sin(θ/2)

sin(θ/2) cos(θ/2)

 1

0

 (2.4)

Thus, for θ = π/2, |Q〉 = |0〉 cos(θ/2) −sin(θ/2)

sin(θ/2) cos(θ/2)

 1

0

 =

 1√
2
− 1√

2

1√
2

1√
2

 1

0

 =

 1√
2

1√
2

 (2.5)

Matrix representation is a powerful tool in describing quantum systems and

www.manaraa.com

8

operations. It can be used not only to describe singular qubits, but quantum systems

in multiple degrees of entanglement, quantum operators which act on these entangled

systems, and the error inducing phenomena which occur in quantum systems. For

this reason, quantum operations in the QooSim simulator are almost exclusively based

around matrix algebra and the matrix representation. The matrix representations of

some of the more common gates are listed in table 2.1.

Symbol Matrix Function

σx

(
0 1
1 0

)
Swap amplitudes (quantum NOT gate)

σy

(
0 −i
i 0

)
Swap amplitudes and phases

σz

(
1 i
0 −1

)
Swap phases

H

(
1√
2

1√
2

1√
2
− 1√

2

)
Hadamard gate - switching basis.

Rx(θ)

(
cos(θ/2) −isin(θ/2)
−isin(θ/2) cos(θ/2)

)
Rotate about the x axis

Ry(θ)

(
cos(θ/2) −sin(θ/2)
sin(θ/2) cos(θ/2)

)
Rotate about the y axis

Rz(θ)

(
cos(θ/2) 0

0 cos(θ/2)

)
Rotate about the z axis

Table 2.1: Quantum gate matrices.

2.1.2 Measurement & No-cloning

The mechanisms in section 2.1.1 are useful for mathematical modeling quantum sys-

tems. One can initialize quantum bits, apply operations, and observe the probabilities

of different outcomes. However, this is not true of physical quantum systems. Infor-

mation maintained in qubit, once encoded, cannot be observed without altering the

state of the qubit itself. Information can only be read from a quantum bit through a

non-deterministic and irreversible process known as measurement.

In a single qubit system, measurement collapses the superposition state α|0〉 +

β|1〉 to either of the states |0〉 or |1〉. The act of measuring the qubit destroys the

www.manaraa.com

9

non-deterministic information which was contained within the quantum state. It is

impossible to know to which state the qubit will collapse before measurement [23].

This uncertainty property provides much of the basis for the security of protocols

described in sections 3.1.1, 3.1.2, and 3.1.3. These protocols rely on uncertainty as

well as the destructive properties of measurement operations to provide confidentiality

both by obscuring the secret quantum information and by providing a mechanism to

detect eavesdroppers.

A clever adversary with infinite resources might at this point speculate that

these protocols could easily be defeated by making a statistically significant number

of copies of the qubits, measuring all of them, and extrapolating an approximation of

the original quantum state from the results. However, it is not possible to create an

identical copy of an arbitrary unknown quantum state. In fact, the effects of cloning

a system by means of measurement is that the system will collapse to a deterministic

state. There will simply be more copies of the classical, deterministic state; but always

exactly the same state [6]. Thus, quantum systems can be thought of as conserving

state in the same way that mass and energy are conserved in a classical sense.

The no-cloning theorem has several important implications for quantum com-

munication. The first is that since quantum states cannot be cloned or inspected,

any eavesdropper will necessarily have to measure the state, thus disrupting the non-

determinism of the state and creating an error with some given probability. Second,

since quantum states cannot be copied, our traditional mechanisms for signal ampli-

fication by “repeating” will not be directly applicable in the quantum realm. Third,

classical mechanisms for error correction, such as syndrome decoding and checksums,

cannot be directly applied to quantum channels.

www.manaraa.com

10

2.1.3 Entanglement

The commonly referred to “Copenhagen interpretation” is a collective name for the

principles guiding modern understanding of quantum mechanics [21]. The term is

somewhat murky, owing to its origins as a sort of philosophical view of quantum

mechanics espoused by Bohr, Heisenberg, and others; who did not necessarily always

agree on the finer points [21]. For the purposes of this thesis, when we refer to the

Copenhagen interpretation, we are describing systems in which exist in a superposi-

tion of states until measurement, in which measurement collapses the quantum state.

For our purposes, the matrix representations given earlier will be sufficient to describe

any quantum systems.

Simulation of entanglement across distributed systems is one of the problems at

the heart of QooSim. This phenomena has no classical equivalent, and is so strange

Einstein called it “spooky action at a distance” [7]. Put most simply, once two par-

ticles are entangled, there will be a correlation between their measurements. The

fascinating thing about entanglement is that particles, once entangled, stay entan-

gled until, according to the Copenhagen interpretation, they are acted upon by a

non-entangling operation, such as noise or measurement. This holds true no matter

the distance separating them. If we were able to send half of an entangled pair to

Pluto over a noise-free quantum channel, the entanglement would still hold despite

the distance. Moreover, local actions on one-half of the entangled pair will have an

effect on the entire system. And yet, strange though it is, entanglement has been ex-

perimentally verified time and again, most recently by astronauts on the International

Space Station [8].

This unbelievable property is perhaps not as spooky as it might seem. If one

considers a pair of gloves and a pair of glove shaped boxes, the gloves, once placed

inside their respective boxes, are indistinguishable. However, once opening a box and

www.manaraa.com

11

finding the left-hand glove, one immediately knows that the other box must contain

a right-hand glove. This analogy should not be taken to imply that entangled qubits

somehow contain secret variables about each other, however.

The Einstein-Podolsky-Rosen (EPR) thought experiment proposed just such an

arrangement in an article entitled “Can Quantum-Mechanical Description of Physical

Reality be Considered Complete?” [24] The crux of the EPR argument was that the

Copenhagen interpretation was incomplete. Given two quantum states, say A and

B, if each state is equally balanced to either |0〉 or |1〉 outcomes, any of four combi-

nations of results should be possible. EPR argued that in the case of entanglement,

a measurement of A as |0〉 always correlates with a value of |1〉 when B is measured

implies some hidden variable governing the related outcomes [24].

Some thirty years later, John Bell proposed an experiment which would put

EPR to the test. The experiment supposed that the hidden variable theory implied

by EPR was true, then a certain inequality about the observed measured values of

the two qubits should hold. However, the inequality does not hold, and has been

shown to be incorrect experimentally [22,23]. The fundamental problem with EPR’s

view of quantum mechanics with respect to entanglement was a failure to consider

the two qubits as parts of a whole larger system. It is not necessary that A’s result is

instantaneously transmitted to B, because the entire system, which includes A and

B are governed as one. All that is necessary is to form a representation of the system

which describes these restrictions, shown below as Bell’s states [18].

Copenhagen entanglement turns out not only to be true, but to play a central

role in the effort to make practical quantum networks and protocols as well. As

discussed in section 3.2, quantum signals degrade as they travel through a medium.

Entanglement has been shown to have the potential to correct errors in which the bit

values or phases are flipped [12] [13] [17]. Our current research explores the effects

of a similar entanglement based error correction mechanism on partial rotational

www.manaraa.com

12

errors [64]. A “dual-rail” system has been proposed using entangled qubits to solve

amplitude damping errors [14]. Entanglement has been theorized as the mechanism

behind quantum “repeaters”, which promise to solve the problem of amplifying a

signal which cannot be read without being destroyed [15] [16].

Quantum entanglement can be used to improve non-entangled quantum encryp-

tion schemes such as BB84 [9,72,74], or to develop new encryption schemes, such as

SARG04 [19]. Superdense coding, which allows for more efficient data transfer and

quantum teleportation, are both possible because of quantum entanglement [10,11].

An entangled state of two qubits has the special condition that there exists

no tensor product of pure single qubit states capable of generating the entangled

state [23]. To describe entanglement in another way, there is no way to factor an

entangled state into composite pure states. In terms of the equation 2.2, at least one

of the state amplitudes must be zero, but no two amplitudes may be zero in such a

way that the value of one of the pair of entangled qubits is determined.

This rule can be restated as follows:

Let A =

 α β

γ δ

Then if A satisfies the condition that the sum of every row and column is not equal to

zero, A is an entangled state. This has important implications for our simulator, in

which it is desirable to distinguish between entangled and unentangled states. Indeed,

by extending this 2 × 2 representation of bipartite entanglement, we can represent

n-party entanglement to a 2 × n2/2 representation and “factor” unentangled qubits

out of the system, as shown in section 4.2.6.

A special subset of entangled states are the Bell states [23]. The Bell states

www.manaraa.com

13

Figure 2.3: Behavior of entangled qubits.

represent the four maximally entangled states of two qubits. These four states are:

1√
2

(|00〉 ± |11〉)

1√
2

(|01〉 ± |10〉)

That is, when one of the qubits in the pair is measured, the value of the other

member of the pair, if measured in the same basis, is certain [24]. An illustration of

this phenomena is shown in figure 2.3.

1. A pair of qubits is, P and Q are entangled in such a way that if one qubit

is measured to be 0, the state of the system collapses to 00. Likewise for the

measurement of 1, the collapse will be 11. There is an equal chance of either

outcome from the measurement. The system is in the state (1√
2
)|00〉+(1√

2
)|11〉.

2. A σx gate is applied to P , changing the state of the system so that if P is

measured to be 0, the state of the system collapses to 01. If P is measured to

www.manaraa.com

14

be 1, the state of the system collapses to 10. Likewise for Q. The system is in

the state (1√
2
)|10〉+ (1√

2
)|01〉.

3. A measurement is performed on P , resulting in 1. The system collapses to 10.

4. As a result, if measured in the same basis, Q will be measured as 0.

In the matrix representation of quantum states, the mathematical method of

generating an entangled state is to take two qubits in non-entangled initial states, say

|q1〉 = 1√
2
|0〉 + 1√

2
|1〉 and |q2〉 = |0〉 and applying the controlled-NOT, or CNOT gate

to the qubits.

CNOT is the quantum equivalent of XOR. It takes two parameters, the control

qubit and the input qubit, and stores the result in the input qubit. If the control

bit is zero, the input bit will not be changed. If the control bit is one, the input

bit will be flipped. The matrix representation of the CNOT gate is given by equation

2.6. Refer to equation 2.2 for the probability amplitude coefficients for this state.

Here we see that γ and δ have been swapped. This fits with our logical expression

of CNOT , as in the first two states, |00〉 and |01〉, the control bit is zero, so nothing

happens. However, in the remaining two states, |10〉 and |11〉, the control bit is one,

so the second bit is inverted, and thus, the probability amplitudes of the states are

swapped [23,24].

CNOT (
1√
2
|0〉+

1√
2
|1〉, |0〉) =

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

1√
2

0

1√
2

0

=

1√
2

0

0

1√
2

(2.6)

CNOT is a unitary matrix, and is its own inverse; CNOT (|q1〉, CNOT (|q1〉, |q2〉)) =

|q1q2〉. As a consequence, CNOT can be used to entangle and disentangle pairs of

www.manaraa.com

15

qubits. This result will be important for understanding error correction codes, quan-

tum repeaters, and teleportation.

www.manaraa.com

16

2.2 Physical Implementations

In classical information processing, bits are stored, processed, and transmitted us-

ing a variety of physical systems: radio waves, photons, electrical pulses, magnetic

orientation, optical media, and hole punches to name a few. Each mechanism has

a preferred use case. Radio waves are used for wireless transmission to lighten in-

frastructure costs, but cannot transmit data as rapidly as fiber optic cables. Optical

media is more stable for long term storage, but not as dense as magnetic disks. So,

too, can qubits be stored in many different ways, each with advantages or disadvan-

tages depending on the environment and intended use [24, 25]. All that is required

for a physical implementation of a qubit system is a pair of physical states, an uncer-

tainty preventing direct observation of those states, the ability to encode information

by manipulating the system, and the ability to collapse the system to one physical

state or the other for measurement [23–25].

The uncertainty of states is a special kind of condition referred to as “super-

position.” If we think along the lines of the Bloch sphere model, superposition does

not mean that the qubit is oriented along a vector between the state vectors, but

rather that it is oriented along both state vectors at the same time, but with different

strengths or probability “amplitudes” [23]. However, for simplicity, the qubit is often

thought of as exhibiting a rotation with respect to the axial state vectors. In this

construct, what is actually being represented is the probability of a given state vector,

not an actual vector between the two.

2.2.1 Ion Traps & Electron Spin

The spin of subatomic particles can be thought of in terms of angular momentum.

This angular momentum of a charged particle, in turn, creates a magnetic field as

in figure 2.4 [24]. When observed, this magnetic orientation will reveal whether the

www.manaraa.com

17

electron is in the spin up state or the spin down state. However, until observation,

the particle is in a superposition of both spin states. The terms +1/2 and −1/2 are

used to indicate up and down spin of an electron, respectively, and correspond to the

|0〉 and |1〉 quantum states [24] [25].

Figure 2.4: Magnetic field created by electron spin.

Both electrons and atomic nuclei exhibit spin. It would typically be difficult

to isolate and measure these spins separately. However, in an ion trap, ions with a

single outer shell electron are subjected to extreme cold temperatures. This causes the

damping of almost kinetic momentum, and thus comparatively amplifies the electron

spin and associated magnetic fields with respect to the kinetic nuclear spin [24,25]. To

perform operations on electron qubits, a laser pulse at a specific frequency is applied

to the ion. These pulses perform rotations of the electron, which can be combined to

construct any quantum gate [24]. Measurement of a qubit represented by an electron

is performed by use of another specialized laser, which will interact with only one

of the possible states. If the qubit collapses to the required state, a photon will be

emitted, which can be captured by a charge-coupled device. Thus, the capture of this

photon and subsequent emission of a charge allows the measurement of the qubit to

www.manaraa.com

18

be registered as a “one” [24] [25].

Ion trap electron qubits are extremely useful as “quantum processing” qubits.

Their lifetime is approximately one second. While this seems not to have much ad-

vantage over nuclear magnetic resonance presented in the next section, ion traps can

perform more than 1013 operations in one second [27] [26]. However, the demand-

ing environmental conditions and apparatus for manipulating and measuring electron

qubits make it difficult to conceive of this mechanism being used for long distance

communication. Even barring these conditions, there would, of course, be the addi-

tional challenge of developing a medium on which trapped ions could be sent [26] [24].

2.2.2 Nuclear Magnetic Resonance

Nuclear Magnetic Resonance (NMR) operates on the same principles as ion trap

electron spin quantum computing. However, in the case of NMR, the spin of a whole

molecule is used to represent a quantum state. Molecules are prepared in an initial

state by polarizing them in a magnetic field. Molecular spin is manipulated using

radio frequency waves, a widely used technique in nuclear chemistry. Measurement

is accomplished by reading the signal voltage of the magnetic spin [24].

Scientists had been hopeful that NMR would represent a mechanism to fulfill

the long term storage role for quantum computing [27]. Lifetimes of greater than 3

hours were shown to be possible [28]. However, there are some fundamental problems

with this representation. First, implementations of NMR use a matrix of millions of

molecules to represent a single quantum state. This is necessary to support radio

frequency operations [24] [28]. Thus, measurement is not the measurement of a single

sub-atomic state, but rather the measurement of the average of millions of states.

This has lead some scientists to question whether or not NMR implementations are

truly quantum computers, or simply very sophisticated physical simulators [29].

Whether or not present implementations of NMR systems are quantum or clas-

www.manaraa.com

19

sical computers will continue to be a subject of debate, research, and investigation.

What is certain is that as the number of molecules used for NMR are reduced, so are

the arguments against the “quantumness” of the system. There is therefore hope that

NMR will still present the quantum solution to long term storage, once sufficiently

advanced technology for manipulation and measurement of atomic nuclei arrives [29].

2.2.3 Photons

The definition of a photon is something of a complicated matter in and of itself. For

the purposes of quantum communication, it is most useful to think of photons as

a unit of light represented in its wave-particle duality form. To create photons for

use as qubits, the most common method is through the use of an attenuated laser.

Attenuation tunes the laser to produce a beam of photons of the desired strength

for use as initial state qubits. Information is represented on photons by using the

polarization of the light to which they are associated. By convention, a horizontal

polarization represents |0〉, while a vertical polarization represents |1〉, although the

correlation of these values is arbitrary. Any two polarization angles may be used, as

long as they are orthogonal [24].

Information can then be encoded on the photon through polarization. Polar-

ization can be accomplished by using static polarizing sheets, similar to but more

refined than the coating of polarized sunglass lenses. These sheets are mechanically

manipulated as the photon beam is transmitted in order to encode information. More

sophisticated systems use the Kerr effect, which alters the polarization of a material in

the presence of electrical current. In these systems, the beam always passes through

the Kerr material, and when a polarization is desired, an electrical charge is applied

to the material [24].

Measurement in a photon based quantum system is done by using a photon

detector. This can be as simple as a sort of camera which requires hundreds or

www.manaraa.com

20

Figure 2.5: Polarization of photons passing through a filter.

thousands of photons in order to detect a bit arrival. Detectors can be as complex as

an avalanche photon detectors (APD), which use the photoelectric effect to register

a change in electrical state when a photon impacts an ion in the detector. APDs are

extremely sensitive, and can detect a signal even with only a few photons present [33].

It should be noted that because neither system can perfectly detect the arrival of

a single photon, channel noise notwithstanding, a qubit is not equivalent to a single

photon, but rather the state of a qubit is encoded on a great number of photons at

once. It is, of course, desirable to reduce the overall number of required photons in

order to improve efficiency of the channel and reduce the likelihood of an undetected

eavesdropper.

Qubits encoded in photons are most commonly sent using one of two mechanisms.

Open-air transmission of photons is possible through the use of directionally aimed

laser pulses. This mechanism requires that there be a line-of-sight between the sender

and receiver. Open-air transmission has an advantage in that it does not require

any infrastructure to connect two sites other than the equipment at the end nodes.

Currently, on Earth, the longest continuous line of sight is around 500 km. While

one might think to send photons to an orbiting space platform for communication,

this too has a theoretical limitation of around 500 km due to signal loss caused by

interaction with particles in the air. The longest open-air transmission to date has

www.manaraa.com

21

been 143 km, as reported by Ma, Xiao-Song, et al. [30].

Photons can also be used to transmit qubits across fiber optic lines. While

existing fiber optic media may be used, as will be shown later, any non-quantum

intermediary hardware, such as a router or a repeater, will actually serve to completely

collapse the quantum state. Nonetheless, existing uninterrupted fiber channels may

be used to send qubits encoded with photons. Photons experience a much greater

loss rate over fiber optic channels than in open air. The noise generated by fiber optic

channels currently limits effective transmission of cryptographic material to distances

of 100 km or less [31]. At this distance, one percent of the transmitted photons will

arrive. Channel noise is exponential; a rapid drop off occurs after this point, with

only one in one million photons arriving to the 500 km point [32].

Photonic qubit quantum communication is already being used to experiment

with quantum protocols, such as BB84, described in section 3.1.1. Created in 2003 at

BBN labs, the DARPA Quantum Network is the first continuously operated quantum

network. In 2004, nodes at Boston University and Harvard University were added.

The network consists of ten nodes in A/B (i.e., Anna/Boris) pairs operating the BB84

protocol. “A” paris are key generators, while “B” pairs are key receivers. An “A”

node can never perform key exchange with another “A” node, and similarly for “B”

nodes [34,35].

The fiber links connecting BBN to Harvard and Boston University (BU) are 10

and 19 km, respectively. The BU link suffers from high attenuation due to campus

traffic, resulting in a complete inability to perform key exchange over this link. This

link is still utilized in order to maintain continuous operation of the network, even

though no useful data can be received. It is intended that in the future, upgrades to

the fiber line will resolve the link failure. The remaining fiber links operate between

3.3 and 5 million pulses of photons per second. Key-generation rates of around

500 bits/s have been observed over inter-site lines, while intra-site links have been

www.manaraa.com

22

demonstrated at a key-rate of over 10 kbits/s [34,35].

The Ali-Baba open-air channel is intended to cover 730 meters between two

NIST buildings. The channel is expected to operate with an error rate of 3%, and

will operate at an estimated 1.25 billion pulses per second. Key-rates of greater than

1mbits/s are thus anticipated [34,35].

Encoding qubits on photons for communication has many practical advantages.

Photons are cheap and easy to generate, requiring comparatively little in the way

of specialized equipment. Photonic qubits exist at room temperature, and do not

need to be held in a magnetic field. Additionally, because photons are not charged

particles, they are relatively inert, and exhibit comparatively little interaction with

their environment. Photonic qubits can be sent over existing fiber media, provided

that they are not interrupted by classical repeaters or routers. Photons also have the

distinct advantage of efficient transmission over open-air; the only wireless method

of quantum communication known. The remainder of this thesis will be presented in

the context of photonic qubits.

www.manaraa.com

23

Chapter 3

Quantum Cryptography &

Communication Protocols

3.1 Protocols

In this section, some of the major quantum cryptographic & communication protocols

and concepts are described. The purpose of this section is to provide an understand-

ing of these protocols, which are later simulated in section 4.3. These protocols were

selected because they are widely studied and understood, but a multitude of alterna-

tives exist [63, 68].

3.1.1 BB84

The BB84 Quantum Key Distribution (QKD) protocol is one of the oldest and most

well explored quantum communication protocols. It is used as a proof-of-concept,

benchmark and demonstration protocol in many experimental applications [34]. Since

its original incarnation, a wide spectrum of variations [62,66,67] have been developed

by those seeking to improve on the efficiency or practical security of the protocol

[23,24,36].

www.manaraa.com

24

The BB84 protocol is presented as a two-party key exchange system. The pro-

tocol assumes that the parties have a both quantum and classical channels between

them. The classical channel is assumed to be insecure. The parties will exchange

secret data by relying on the quantum channel. They will then use this data to gen-

erate a symmetric key for use over the classical channel. By convention, one party,

Alice, generates qubits while another, Bob, measures them [23,24, 36]. In our imple-

mentation, these are referred to as the generator and determiner parties, respectively.

The protocol proceeds as follows:

1. Alice generates a pair of random set of bits, Abases and Abits. Alice encodes Abits

onto a set of qubits, Q of equal length, initially valued at |0〉. For each member

Abasesi of the set of bases, if Abasesi is one, Alice applies a Hadamard gate to

Qi. If Abitsi is one, Alice applies a σx gate to Qi. The resulting set of states is

shown in figure 3.1 using the circular visualization. Alice saves her choices for

bits and bases, then transmits Q to Bob.

Figure 3.1: BB84 encoding states.

2. Bob generates a random set of bits, Bbases. Bob attempts to decode Alice’s

bits. If Bbasesi is one, Bob applies a Hadamard gate to Qi and measures in the

rectalinear basis. Bob then measures Qi and stores the result in Bbits. Now

assuming no channel noise, if Alice and Bob have chosen the same base for

position i, then Abitsi is equal to Bbitsi , that is, Alice and Bob have shared

information. If they have chosen different bases, then the qubit at position i

will have randomly collapsed to a value of zero or one.

www.manaraa.com

25

3. In order to determine which bits have been successfully shared, Bob transmits

Bbasesi to Alice over the insecure classical channel. Note that it does not matter

at this point if an attacker can read the base string; the qubits have already

passed through the channel, and the attacker could not have copied qubits for

delayed measurement because of the no-cloning theorem.

4. Alice receives Bob’s bases and compares them to hers. She sends a message over

the classical channel informing Bob of which bases he has correctly guessed.

5. Alice and Bob now share a set of “raw” key bits for use in generating their

shared key. They must now compare a subset of their bits in the clear in order

to estimate channel error and potentially detect an eavesdropper. If the channel

error rate is known, it can be compared to the actual error rate experienced.

An error rate which is higher than expected may indicate that an eavesdropper

has introduced additional errors by performing measurements on the quantum

bits and replacing them on the channel.

6. If Alice and Bob determine that their error rate is acceptable, they move on

to the process of eliminating errors in their shared bits through cascade error

correction [60]. This process can take the form, for example, of exchanging

checkbits of sufficiently large chunks of data. If the checkbits match, the data is

kept. If they do not, Alice and Bob may discard the chunk or further subdivide

it to determine where in the chunk the error exists. The size of these chunks of

data will depend on the error rate of the channel.

7. After errors have been eliminated from the “raw” key bit stream, Alice and Bob

apply a privacy amplification scheme. For our implementation, we chose to take

a hash of the remaining “raw” key bits, and then use this hash in generating

a symmetric key. The initial hashing serves two purposes. First, it takes the

variable length string of remaining qubits to a fixed length string for use in

www.manaraa.com

26

key creation. Second, it ensures that even if an eavesdropper had managed

to capture a portion of the “raw” key bits, she will not be able to use that

knowledge to decipher information encoded with the final key.

3.1.2 E91

One drawback of the BB84 protocol is that in step 5, Alice and Bob must publicly

disclose some of their key generating bit values in order to detect an eavesdropper.

A similar protocol proposed by Arthur Ekert aims to avert this disclosure. Ekert’s

protocol (E91) is again a bipartite protocol, but his design uses three measurement

bases on each party’s system. E91 additionally has the requirement that the qubits

used for key generation must initially be entangled in the state |01〉+|10〉√
2

. These qubits

may be generated by either party in the key exchange or some third party. The

protocol remains secure even if the eavesdropper herself generates the entangled qubits

[38] [37].

One party in the exchange elects to use the bases {−π/8, 0, π/8}, while the other

uses {0, π/8, π/4} (angles in the context of the Bloch circle). The parties share two

bases, and will measure using the same basis 2/9 times; just under 1/4. When the

parties measure along the same basis, the initial entangled state will ensure that they

receive opposite results 100% of the time [38].

As with BB84, the parties publicly announce their bases. However, unlike BB84,

instead of discarding the bits resulting from measuring in unmatched bases, they then

publicly announce the bit values as well. Based on Bell’s theorem, alluded to in 2.1.3,

if the qubits measured were interrupted by an eavesdropper who measured them,

entanglement would be broken. The two qubits would then exist as two locally distinct

systems, as with EPR’s view, and Bell’s inequality would hold true. Therefore, if the

parties calculate that Bell’s inequality has been broken by a sufficient margin, they

can assume that the qubits were entangled when received, and no eavesdropper is

www.manaraa.com

27

present [38] [37].

3.1.3 Kak06

The two protocols described previously share many of the same mechanics. Qubits are

exchanged and measured in randomly selected bases, the bases are then announced

to identify the cases in which they agree. These processes, by their nature, are

incapable of facilitating the exchange of anything but random information. While

this restriction is fine for key exchange protocols, loss of large portions of data in

a message would be unacceptable. Additionally, these protocols rely on a classical

channel for the post-quantum measurement key negotiation. This, in turn, implies

that the classical channel must be reasonably secure from tampering.

Subhash Kak designed a protocol which uses an entirely different paradigm, and

is immune to the above mentioned restrictions. Kak’s protocol can be used for both

key negotiation, i.e., for symmetric key distribution, or directly for secure commu-

nication [39, 40]. The protocol, Kak06, uses only quantum channels for exchanging

information. Unlike BB84 and E91, Kak06 is the quantum version of a classical

protocol: Shamir’s Three Pass Protocol [61, 73].

In Kak’s protocol, each party chooses a secret quantum transformation. Return-

ing to the conventional QKD parties, UA for Alice and UB for Bob. These trans-

formations are unitary matrices, and must commute. The transformations may, for

example, be rotational gates. Alice first encodes the information she wishes to send

on a qubit. This could be either a classical zero or one state, or it could be some

quantum state she wishes to send to Bob. Alice then applies her secret transforma-

tion, UA to the qubit. She then transmits the qubit to Bob, who applies his secret

transformation, UB, and returns the qubit to Alice. Since quantum gate operations

are commutative, Alice then applies the inverse of her transformation, U †A to the

qubit. Alice transmits the qubit back to Bob, who similarly applies U †B [39].

www.manaraa.com

28

Figure 3.2: Stages of encoding and decoding in Kak06.

If the quantum channel has not been disturbed, the qubit Bob receives will be

in exactly the state Alice encoded. However, if an eavesdropper has at any point

intercepted and measured part of the transmission, the message will be garbled. Kak

does not provide a method of detecting corruption or eavesdropping in his description

of the protocol. However, one could presumably exchange checksum data as with

classical information packets in order to validate data on receipt. These checkbits

may certainly be encoded in the Kak06 protocol as well.

An item of interest about Kak’s protocol is that the parties may change their se-

cret transformations as often as they wish, and they may change them independently.

The only requirement, of course, is that they keep knowledge of the transformations

around long enough to invert them. This additional variance in the encoding done

by the protocol provides an extra layer of security against a probabilistic eavesdrop-

per [39].

3.1.4 Quantum Teleportation

The motivation behind Kak’s protocol was to send classical or quantum information

using only quantum channels. Teleportation, conversely, allows for the transmission of

quantum information using only two classical bits of information. Moreover, neither

party is required to have knowledge of the internal state of the qubit. The key to this

process is as in the E91 protoco and other quantum key distribution algorithms [70]l,

www.manaraa.com

29

a pre-sharing of entangled states.

Suppose that Alice and Bob each have one half of the state |Q〉 = |qAqB〉 =

1√
2
|00〉 + 1√

2
|11〉, and Alice wants to transmit the arbitrary state |ψ〉 = α|0〉 + β|1〉.

The progression of the system is described by the equations in 3.1. Alice performs

a CNOT operation on |ψ〉 and |qA〉 with |ψ〉 as the control bit. Alice then applies a

Hadamard gate to |ψ〉. She measures both of her qubits, which results in one of the

systems of equations described by 3.2 [24,25].

|Qψ〉 = α/
√

2|000〉+ β/
√

2|001〉+ α/
√

2|110〉+ β/
√

2|111〉

CNOT (ψ, qA)|Qψ〉 = α/
√

2|000〉+ β/
√

2|101〉+ α/
√

2|110〉+ β/
√

2|011〉

HCNOT (ψ, qA)|Qψ〉 = α/2|000〉+ α/2|001〉+ β/2|010〉 − β/2|011〉+ β/2|100〉

−β/2|101〉+ α/2|110〉+ α/2|111〉

(3.1)

qA = 0, ψ = 0, |qB〉 = α|0 > +β|1 >

qA = 0, ψ = 1, |qB〉 = α|0 > −β|1 >

qA = 1, ψ = 0, |qB〉 = β|0 > +α|1 >

qA = 1, ψ = 1, |qB〉 = −β|0 > +α|1 >

(3.2)

Now, if Alice transmits her measured bits as classical information to Bob, Bob

knows exactly which transformations to perform to align |qB〉 to the initial state |ψ〉,

given in table 3.1.

Teleportation is a fascinating consequence of entanglement. It appears to violate

www.manaraa.com

30

Results of Bob’s
qA and ψ operation

00 –
01 σz
10 σx
11 σxσz

Table 3.1: Teleportation Transformations.

the no-cloning theorem, in particular. However, it is important to realize that no

information has been “copied” as a result of the teleportation process. Instead, in

the end, one is left with a single qubit in the state described by |ψ〉, and two classical

bits. One could not use teleportation to create an arbitrary number of qubits in the

same state; only to transfer state from one qubit to another. This transference of state,

however, is an exciting result in terms of quantum communication. Teleportation is

the mechanism at the core of many proposals for quantum repeaters, described in the

next section.

www.manaraa.com

31

3.2 Error Detection & Correction

Classical information systems are subject to a wide variety of hardware and software

phenomenon which can compromise the integrity of data in storage, processing, and

transmission. These errors present themselves in two groups: misread bits, where a

zero is read as a one or vice-versa, and lost data, due to signal or current degradation.

The former case is commonly resolved through the use of redundant bits or checksums.

In the later case, data is often freshened through the use of a repeater (or, in terms

of computer memory, refreshing). A repeater reads the signal off of an incoming line

and rebroadcasts a fresh signal on an outgoing line. This has the general effect of

amplifying the signal thereby counteracting signal attenuation.

The same types of errors present themselves in quantum information systems.

However, the classical correction techniques are not directly applicable to the realm

of quantum communication. In order to use a checksum, all data needs to be read

and summed. Similarly, redundant bits need to be compared against each other

to detect and correct any inconsistencies. Either of these processes would require

measurements, and once the qubit is measured, all of the quantum information is

lost. Likewise, classical repeater techniques would violate the no-cloning theorem

prohibiting the copying of a qubit’s internal state [24,41].

Quantum systems are also subject to types of errors which have no classical

analogy. Classical signal loss is similar to amplitude damping in qubits, but quantum

systems also experience phase damping. A bit-flip error is represented as a rotation

of the Bloch sphere about the y-axis. Quantum systems experience phase-flip errors,

which are rotations about the z-axis [24,41]. In addition, it is not necessary that these

rotations completely flip the quantum state. Arbitrary degrees of rotation errors are

possible about any combination of axes [24,47].

Quantum systems are necessarily interact with their environments. Each point of

www.manaraa.com

32

interaction carries with it a certain probability of error introduction. As time passes,

the system evolves from one probabilistic state to another. In this evolution, the qubit

is termed as passing through a channel. This channel represents a passage through

space-time, and may or may not be associated with transmission. For example, a

qubit at rest in an ion trap system is subject to an amplitude damping channel as

the system attempts to reach temperature equilibrium with its environment [24] [43].

Figure 3.3: Effects of Errors on the Bloch Sphere Representation of Qubits.
(Clockwise from top left: amplitude damping, bit-flip, phase-flip, rotation).

www.manaraa.com

33

3.2.1 Kraus Operators

Amplitude damping and phase damping quantum error channels are destructive pro-

cesses, in which information is lost from the quantum system. As such, it is not

invertible, and cannot therefore be represented by a unitary matrix, necessary for

quantum gate operations. Instead, such processes are described by matrices in the

form of Kraus operators.

The definition of Kraus operators requires another tool for representing quantum

states: the density matrix ρ. The density matrix of a system is given by
∑

i pi|ψi〉〈ψi|,

where |ψi〉 is some state in the system, 〈ψi| is the transpose and conjugate of the state,

and pi is the state’s probability [24,45,46]. The utility of the density matrix is that it

allows for the expression of a quantum state in a way that can be used in conjunction

with a Kraus operator. Equation 3.3 shows the mathematics for generating the density

matrix of the state 1√
2
|0〉+ 1√

2
|1〉 = |+〉 [45].

ρ =
n∑
i

pi|ψi〉〈ψi| = |+〉〈+| =

 1√
2

1√
2

(1√
2

1√
2

)
=

 1
2

1
2

1
2

1
2

 (3.3)

Kraus operators represent the probability of a given error being induced. These

operators are generally presented as a system of matrices: E0...n, and applied to

quantum states through the operator-sum method, E(ρ) =
∑n

i EiρE
†
i , where En is

the matrix associated with the nth outcome occurring. For example, E0 may be the

operator for attenuation not occurring, and E1 is the operator if it has.

3.2.2 Amplitude Damping

In the Bloch sphere representation, a qubit affected by an amplitude damping channel,

as shown in figure 3.3 (top-left) appears to “shrivel” towards the north pole, or |0〉

www.manaraa.com

34

value. This behavior is an illustration of energy loss by the quantum system to the

environment. Amplitude damping is a major factor affecting the stability of quantum

systems, and part of the necessity for highly controlled environments in most physical

implementations. For the purposes of this paper, amplitude damping is framed in

terms of photonic qubits passing through a media; fiber or open-air. The transmission

distance limits discussed in section 2.2.3 are due to attenuation caused by amplitude

damping channel, associated with photonic interaction with fiber material or atoms

in the air [24].

The Kraus operators for amplitude damping are given in equation 3.4, where η

is the probability of energy dissipation occurring. The Kraus operators are applied to

a quantum state as shown for state Q in equation 3.5 (ignoring phase) [24] [43] [42].

EAD0 =

 1 0

0
√

1− η

 ;EAD1 =

 0
√
η)

0 0

 (3.4)

EAD(Q) =
∑

EADi
QE†ADi

=

 1− (1− η)(1− α)

β(1− η)

 (3.5)

Logical Means for Correction of Damping Errors

One classical method of reducing transmission errors is to use repeater nodes at

specific intervals in the transmission line. Fiber optic runs will typically have a

repeater node every 50 km or so. These repeaters absorb and interpret the signal

received through the incoming photons and generate new photons to retransmit on

down the line. Clearly, the no-cloning theorem, which prohibits the copying of one

qubit state onto another qubit applies to this classical repeater situation. A photon

absorbed by a classical repeater would collapse into a measured state. The new photon

would be sent with a random polarization, and all of the information encoded upon

the initial photon would be lost. Therefore, quantum communication is incompatible

www.manaraa.com

35

with classical hardware repeaters; classical and quantum communication cannot co-

exist on these networks.

In order for a photonic quantum repeater to function, a special consequence of

entanglement known as teleportation must be employed. Instead of either one of the

nodes generating the entangled qubits, they will be generated by an intermediate

node, with one qubit from each pair being sent in either direction. If the repeater

nodes are separated by 100 km, a qubit sent between them will have an amplitude

damping error rate associated with that distance, say er. However, if a pair of qubits

are sent to each repeater node by a centrally located entanglement source equidistant

from each repeater, the error rate will be
√
er [51, 52].

Because of the properties of teleportation, neither node needs to know anything

about the state of the qubits being repeated. One can envision a hierarchy or tree of

these repeaters, spaced at regular intervals. A quantum state could be sent from one

node to the other along a path of repeaters which are hierarchically related through

entangled qubits. However, this scheme is not without drawbacks. Most obviously, a

continuous stream of entangled qubits is required in order to send information between

nodes. Quantum measurements introduce errors of their own. These errors will be

multiplied by the measurements required at each hop in the repeater chain. Finally,

entangled states cannot be sent using teleportation. This is a serious deficiency, and

precludes many of the most important quantum communication protocols.

3.2.3 Bit- & Phase-Flip Errors

While amplitude damping contracts the state of a qubit towards the |0〉 state, bit-

and phase-flip error channels induce a probability of inverting either the amplitude

or phase, respectively, of the quantum state. Visualized on the bloch sphere in figure

3.3, the effect of the flip channels is to squeeze the qubit along the z- or x-axis. A

bit flip channel has the operators described in equation 3.6, and phase-flip errors are

www.manaraa.com

36

described in equation 3.7 [24] [43] [42].

EBF0 =

 √η 0

0
√
η

 ;EBF1 =

 0
√

1− η
√

1− η 0

 (3.6)

EPF0 =

 √η 0

0
√
η

 ;EPF1 =

 √1− η 0

0 −
√

1− η

 (3.7)

Logical Means for Correction of Bit- & Phase-Flip Errors

In classical systems, bit flip errors may be detected and corrected through the use

of majority voting schemes. In these systems, redundant copies of bits are stored or

transmitted. When they are read, the values of the bits are compared. If all bits

are equal, then no error is presumed to have occurred. However, if one or more bits

disagree, an error has occurred. These schemes work on the assumption that errors

on the channel must be relatively rare. Thus, if a majority of the bits hold the same

value, the dissenting bits are presumed to be in error.

The application of a majority voting scheme to quantum channels requires some

careful maneuvering to get around the no-cloning theorem in creating redundant

copies of bits as well as the destructive nature of measurement in evaluating those

bits.

Suppose Alice wishes to send the quantum state α|0〉 + β|1〉 to Bob. Alice will

first generate two additional qubits, both in the state |0〉 and entangle them with her

state through use of the CNOT gate. The resulting state will be α|000〉+β|111〉. Note

that this operation has not copied the state of Alice’s original qubit. A measurement

of any qubit in the triplet will result in a definitive value for the other two qubits,

and thus state is preserved [24] [43] [23].

Alice sends all of the bits in her triple to Bob. Assume that one of those qubits,

say the last one, experiences a bit-flip error. Bob will receive the state α|001〉+β|110〉.

www.manaraa.com

37

Bob now prepares two ancillary qubits, |a1〉 and |a2〉, both in the state |0〉. He applies

a CNOT gate to his ancillary qubit with the first qubit in the message as the control

bit. The result is the four-party entangled state, α|0010〉+ β|1101〉 [24] [43] [23].

Bob next applies another CNOT gate to his ancillary qubit, this time with the

second qubit as the control bit, resulting in (α|001〉+ β|110〉)|0〉. The ancillary qubit

is then measured; in this case to be a value of zero. Because Bob sees a zero as

the result of this measurement, he can deduce that the first and second qubits are

identical. Assuming that errors are rare on the channel, no error has occurred on the

first or second qubits [24] [43] [23].

Bob now applies the same procedure using his second ancillary qubit, |a2〉 with

the second and third message qubits as control bits, respectively. In this case, when

the ancillary qubit is measured, it will result in a value of one. Bob knows that a

value of one in this measurement means that the second and third qubits do not share

the same value. Since he knows that the first and second qubits are in agreement, he

can apply the majority voting principle to infer that a bit-flip error has occurred on

the third qubit. Bob can now apply the σx gate to correct the error [24] [43] [23].

A similar process is available to detect and correct phase flip errors. All that is

needed is to apply the Hadamard gate to each of the message qubits before performing

entanglement with the ancillary qubits. Error detection is accomplished in the same

way, but now a σz gate will be applied to correct the error. The encoding for phase-flip

error correction is given by 3.8 [24] [43] [23].

α
|000〉+ |111〉√

2
+ β
|000〉 − |111〉√

2
(3.8)

Bit- and phase-flip detection and correction can be combined into the nine-qubit

system defined by Shor code. The initial qubit is entangled with two additional

qubits, and all three qubits are passed through the Hadamard gate as with phase-flip

detection. However, each qubit is then additionally entangled with two (for a total

www.manaraa.com

38

of six) qubits. The encoding for Shor code is given in equation 3.9 [24] [43] [23].

α
(|000〉+ |111〉)3

2
√

2
+ β

(|000〉 − |111〉)3

2
√

2

Where |Q〉3 = |Q〉|Q〉|Q〉
(3.9)

Whether using protection against bit- or phase-flip errors, or the Shor code, a

maximum of one arbitrary bit- or phase-flip error can be detected and corrected.

3.2.4 Rotational Errors

Rotation errors occur when a photon is perturbed in such a way that its polarization is

altered. This kind of error has the same effect as applying an additional polarization

filter to the qubit. Indeed, this may be the result of an unintended defect in the

photon’s path [47,64]. Satellite based quantum networks hold great promise for long

distance quantum communication. However, satellite-to-ground communication may

be affected by rotational errors due to the relative motion of the satellite and the

ground station [48,49].

For all the information available on bit- and phase-flip errors, there is surprisingly

little literature about the nature and correction of rotational errors. Through our

research into quantum error correction [64, 65], we found that using the three-bit

bit-flip code presented in the section above, we were able not only to detect a single

rotational error, but also correct it, simply through application of the code. In fact,

while we were only able to correct a single rotational error, we were able to discern

that a rotational error had occurred even if all three qubits had been affected.

In the case of a single qubit, suppose the qubits have been entangled as for bit-

flip detection, and that a rotational error of ω about the y-axis has occurred on the

second qubit during storage or transmission. Then the state of the qubits will be

α(cos ω)|000〉+α(sin ω)|010〉 − β(sin ω)|101〉+ β(cos ω)|111〉. Note that the terms

www.manaraa.com

39

associated with cos ω correspond to the unaltered state, while the terms associated

with sin ω correspond to a bit-flip error.

After applying the CNOT operations on the first ancillary qubit (|a1〉) with

the first and second message qubits as control qubits in turn, the resulting state

is α(cos ω)|0000〉+α(sin ω)|0101〉−β(sin ω)|1011〉+β(cos ω)|1110〉. When the an-

cillary qubit is measured, one of two cases will result. If it is measured as zero, with

probability cos2 ω, the state collapses to α|000〉 + β|111〉, and the system has been

restored. If not, the system collapses to α(sin ω)|010〉 − β(sin ω)|101〉; which is a

bit- and phase-flip error on a single qubit. This scenario, if expanded to a nine-qubit

system, can then be resolved by the use of Shor’s code.

If the same technique is repeated, supposing a rotational error on both the first

and second qubits instead, the system progresses through the application of the first

two CNOT gates through the first ancillary qubit as given by equation 3.10.

α|000〉+ β|111〉 R(ω)⊗R(ω)⊗I−−−−−−−−→

α cos2 ω|000〉+ α cosω sinω|001〉

+α cosω sinω|010〉+ α sin2 ω|011〉

+β sin2 ω|100〉 − β cosω sinω|101〉

−β cosω sinω|110〉+ β cos2 ω|111〉

CNOT (q1,a1),CNOT (q2,a1)−−−−−−−−−−−−−−−→

α cos2 ω|0000〉+ α cosω sinω|0010〉

+α cosω sinω|0101〉+ α sin2 ω|0111〉

+β sin2 ω|1001〉 − β cosω sinω|1011〉

−β cosω sinω|1100〉+ β cos2 ω|1110〉

(3.10)

www.manaraa.com

40

Note that the outer four terms are associated with the probability of the ancillary

qubit being measured to be zero. If this is the case, then the system collapses to the

equation shown in the first line of equation 3.11. The system progresses through

the application of the second two CNOT gates through the second ancillary qubit.

Similarly, the inner four terms are associated with the probability of the ancillary

qubit being measured as one, and the system progresses as in equation 3.12 in this

case.

a1 := 0

α cosω|000〉+ α sinω|001〉

−β sinω|110〉+ β cosω|111〉

CNOT (q2,a2),CNOT (q3,a2)−−−−−−−−−−−−−−−→

α cosω|0000〉+ α sinω|0011〉

−β sinω|1101〉+ β cosω|1110〉

Measurea2−−−−−−→

a2 := 0) α|000〉+ β|111〉

a2 := 1) α|001〉 − β|110〉

(3.11)

www.manaraa.com

41

a1 := 1

α cosω|010〉+ α sinω|011〉

+β sinω|100〉 − β cosω|101〉

CNOT (q2,a2),CNOT (q3,a2)−−−−−−−−−−−−−−−→

α cosω|0101〉+ α sinω|0110〉

+β sinω|1000〉 − β cosω|1011〉

Measurea2−−−−−−→

a2 := 0) α|011〉+ β|100〉

a2 := 1) α|010〉 − β|101〉

(3.12)

What is most interesting about this procedure is that under certain circum-

stances, such as if ω is small, it has a high probability of correcting rotational errors

on more than one qubit. If the receiving party should measure both of his ancillary

qubits to be zero, he can be reasonably certain that no bit-flip or rotational errors

have occurred; or that those rotational errors which did occur have been cleaned up.

It remains to be seen if we can apply this research to a general error correction scheme

by combination with Shor code or dual-rail systems.

It is clear that if an ancillary qubit, a1 or a2 is measured to be one, this scheme

cannot correct the error on its own. While the combinations of ancillary qubit mea-

surements are unique within cases affecting one, two, and three qubits, they are not

globally unique across all three cases. Thus, it is not possible to tell whether a rota-

tional error occurred on only one qubit or if three qubits had been affected. In short,

our scheme allows for the “hidden” correction of rotational errors in cases where

the ancillary qubits measure zero. In cases where they measure one, it can only be

discerned that at least one error has occurred.

www.manaraa.com

42

Chapter 4

Quantum Simulation

4.1 Asynchronous Operations on Entangled Qubits

Among the more daunting challenges for simulating quantum information processing

on distributed systems is the problem of entanglement. In the physical world, entan-

gled qubits appear to be “aware” of their partner’s states instantaneously, regardless

of the distance between them. This property of entangled systems runs counter

to classical ideas of physics and of information theory. In designing simulation of

entanglement over distributed systems, several different schemes were examined to

support entanglement, including a master“registry” service to hold global states, and

a chatty“lock-and-update” (lock) protocol, where every operation is transmitted to

all entangled nodes immediately in transactional manner.

Ultimately, both the registry and lock protocols were unsatisfactory. The registry

required at least one entity in the communication, if not a dedicated party, to own

all qubits in the system. A peer-to-peer design was thought to be more desireable,

allowing a more fluid implementation of new protocols and scalability to several nodes.

The lock protocol was a viable alternative, but with several drawbacks. First, the

overhead involved in each operation would grow with each node. Thus, the total

traffic, assuming all nodes generate constant traffic, would grow exponentially with

www.manaraa.com

43

each new participating node. Second, each node would be required to have full, up-

to-date copies of all entangled states at all times. But each node only needs to know

about the qubits which it holds, and how those qubits are impacted by their partners.

Systemic omnipotence is not a requirement of the simulator, but of the lock design;

and an expensive requirement at that.

In experimentation with entangled operations, we came to the idea of asyn-

chronous operations. The idea, described in detail in section 4.1.2, is to allow the

node holding a portion of an entangled system to continually operate on the qubits

which make up that portion. A node only needs to update its peers when an oper-

ation either affects and entangled state in which those peers participate, such as a

measurement, or when local operations such as CNOT add or remove qubits from a

shared entanglement.

4.1.1 Linear Extension Operations

Any operation on one qubit in an entangled pair state necessarily has an effect on the

other qubit, as described in 2.1.3 and shown in figure 2.3. For unentangled qubits,

gates operations are the product of the matrix representation of the gate (G) with

the matrix representation of the qubit [54,55]. G is a unitary matrix, with coefficients

a and b such that |a|2 + |b|2 = 1. To operate on the generic pair state, R, the tensor

product of G and the identity matrix I are used to map a 2× 2 unitary matrix onto

a 4× 4 matrix [54,55].

Given

R = α|00〉+ β|01〉+ γ|10〉+ δ|11〉 (4.1)

and

G = eiϕ

 a b

−b a

 (4.2)

www.manaraa.com

44

(I ⊗G)R = eiϕ

a b 0 0

−b a 0 0

0 0 a b

0 0 −b a

α

β

γ

δ

(I ⊗G)R = eiϕ

αa+ βb

α(−b) + β(a)

γa+ δb

γ(−b) + δ(a)

(I ⊗G)R = eiϕ(αa+ βb)|00〉

+ (α(−b) + β(a))|01〉

+ (γa+ δb)|10〉

+ (γ(−b) + δ(a))|11〉

(4.3)

4.1.2 Asynchronous Operations

When simulating quantum systems and algorithms, it is at present necessary to use

classical hardware and methods. This includes simulation of entangled states dis-

tributed across multiple computer systems over a classical network. It is in many

cases necessary to apply quantum gates to these entangled quantum states after they

have been dispersed across physical systems.

The conventional method of applying the tensor product of the gate and the

identity matrix becomes challenging when considering these conditions. However, we

will show that there exists an equivalent asynchronous operation on a single qubit

which can be used to simulate a series of synchronous operations on the system.

We start by describing the system for simulation, shown in figure 4.1. At the

moment a pair of qubits P,Q are entangled, each system ℵ,i, respectively must

www.manaraa.com

45

begin maintaining a history of its actions. Additionally, the simulator must maintain

a method for each qubit to communicate with the other, such as a network address.

Conventional, single qubit gates may be applied without limitation to each qubit

in the pair individually for the duration of the entanglement. When entanglement

is broken, such as by measurement, the simulators must reconcile the state of their

portion of the entangled state.

If the qubit P is measured, ℵ then should alert i of the measurement, and inform

i of all operations performed on P since entanglement but before measurement.

Conceptually, i should “rewind” the operation history of Q, restoring the initial

entangled state. i will then update the amplitudes of Q to reflect the outcome of

the measurement, and then replay both the operational history of P and Q against

Q. The result will provide the state of Q, disentangled, after the measurement of P .

A measurement of Q will now match observable real world outcomes. The following

Figure 4.1: Simulated entanglement through asynchronous operations.

www.manaraa.com

46

example interaction is shown in figure 4.1:

1. P is set in the state |0〉+|1〉√
2

, and a CNOT gate is applied to entangle Q into the

same StateVector object. Q is transmitted across a classical network.

2. A σx gate is applied to P . P processes the gate operation and stores the matrix

corresponding to the gate in its history vector. Note that the gate operation

has no discernable effect on the measurement outcome for the individual qubit

represented by Q.

3. A measurement operation is applied to P . P measures the qubit to be one.

In the process of reducing the StateVector object, the system identifies Q as a

remote Qubit, and then notifies the network peer of the measurement results

through the ChannelService.

4. The ChannelService notifies the remote state vector containing Q that a mea-

surement operation has taken place on P . Included in this notification are P ’s

result and history. Q “rewinds” any operation which has been performed on

itself by applying the inverse matrix operation.

5. Q now applies P ’s history, applying the σx gate, which sets its state to |0〉.

6. Q would now re-apply any operations which had taken place on it prior to

notification from the entanglement object. No operations took place in this

scenario. Note that if Q were now measured, the result would be |0〉 with 1.0

probability.

We will now show by direct proof that performing asynchronous operations on a single

qubit in the pair is equivalent to performing the same operation as a linear extension

on the entangled pair.

Given (4.1) and (4.2), and assuming R to be composed of the qubits P = p0|0〉+p1|1〉

www.manaraa.com

47

and Q = q0|0〉+ q1|1〉

P (G⊗Q) = eiϕ(p0|0〉((aq0 + bq1)|0〉

+ ((−b)q0 + (a)q1)|1〉)

+ p1|1〉((aq0 + bq1)|0〉

+ ((−b)q0 + (a)q1)|1〉))

P (G⊗Q) = eiϕ((ap0q0 + bp0q1)|00〉

+ ((−b)p0q0 + (a)p0q1)|01〉

+ (ap1q0 + bp1q1)|10〉

+ ((−b)p1q0 + (a)p1q1)|11〉)

And now, since p0q0 = α, p0q1 = β, p1q0 = γ, and p1q1 = δ:

P (G⊗Q) = eiϕ(αa+ βb)|00〉

+ (α(−b) + β(a))|01〉

+ (γa+ δb)|10〉

+ (γ(−b) + δ(a))|11〉

(4.4)

Since (4.3) is equivalent to (4.4), the operations on a single qubit are equivalent to

the linear extension applied to the system.

It is worth noting that any of the paired state amplitudes, α...δ could be zero valued,

thus encompassing the Bell pair states in this definition.

www.manaraa.com

48

4.2 QooSim Implementation Details

4.2.1 Previous Work

In this section, we provide a survey of existing quantum simulators. We do so in an

effort to show that while there are certainly very well constructed quantum computing

libraries available, two features are rarely implemented: distributed simulation across

a quantum channel and behavior of entangled qubits. We further demonstrate that

the union of these features, simulation of the behavior of entangled qubits across

distributed systems, has not, to our knowledge, been addressed. Such a feature would

enable the simulation of entanglement based quantum key distribution protocols on

classical hardware. We believe this to be an important tool for validating security

and efficiency claims about such protocols.

Libquantum

Libquantum is one of the most widely used and cited [58] quantum computing li-

braries. Indeed, the preliminary work on our quantum library was to port libquantum

to C++. However, as we will later show, our work has since evolved and bares little

resemblance to structure of the original.

Libquantum is written in C, and received its last major update in 2013. The

library is structured around quantum registers. Quantum registers contain a set of

nodes. Each node corresponds in turn to a possible value for the register and the

probability of that value occurring. The authors chose this design, presumably, for

greater efficiency with quantum algorithms such as Shor’s and Grover’s. To wit,

example implementations of both algorithms are included in the library. However, a

consequence of this structure is that storage of quantum registers consumes system

memory at an exponential rate. Indeed, we struggled to use a quantum register longer

than 22 qubits on our development machines.

www.manaraa.com

49

Libquantum contains a number of built-in gates and operations for manipulating

quantum registers, including Hadamard, sigma and rotation gates. The library also

supports controlled operations on pairs of qubits, such as swap and CNOT gates and

on 3-tuples of qubits, such as the Toffoli gate. It does not, however, have facilities for

sending these registers across a network or even for serialization of these structures.

Together with a limited register size, it is difficult to simulate entanglement based

quantum key distribution algorithms using libquantum across a network.

Our initial efforts to extend libquantum involved lexical serialization and re-

assembly of data structures into raw TCP data streams. Operations were then per-

formed by sending specialized code-word tokens, again over raw TCP data streams.

We had in essence begun to design an application layer protocol for libquantum.

However, this effort quickly proved cumbersome and difficult to maintain and extend.

The desire to avoid creation of a network based protocol exclusively to support our

simulator became one of the design goals for our library. After all, serialization is a

problem which has been solved many times over and besides not within the scope of

our problem.

Q++

Q++ is a somewhat later addition to the family of quantum simulators. As the name

implies, the library is written in C++. The last update to this library was in 2013.

The library is designed using a series of templates, allowing the user to construct

one or more quantum “simulator” objects, each with one or more quantum “register”

objects associated. The internal representation of quantum information is the same as

for libquantum; a list of possible states is stored in correlation with the probability of

each state occurring. Q++ has a feature for defining quantum operations, or QOPs,

which are in turn a construction of one or more quantum gates, similar to a quantum

circuit.

www.manaraa.com

50

We were able to compile the library, but were limited in our ability to test this

library. We suspect that Q++ would have the same memory consumption issues en-

countered by libquantum. Q++ does not have facilities for network transmission or

serialization of quantum information. While the design of Q++ shows some exciting

promise with simulator objects, we believe it would be difficult to simulate entangle-

ment based quantum key distribution protocols using Q++. We did learn from this

approach that creating a control object to manage registers would be useful to our

approach. We incorporated this concept into our design through the“System” object.

Quantum::Entanglement

Quantum simulation is not limited to strongly typed, compiled languages. The Quan-

tum::Entanglement module aims to “port some of the functionality of the universe

into Perl” [59]. The module is unique in that it allows any set of states to be repre-

sented probabilistically, including floats, integers, strings, and objects. Any numerical

probability can be assigned to these states. The library will self-normalize the prob-

abilities. Quantum::Entanglement not only allows two quantum probabilistic values

to be related, but allows for the “entanglement” of classical values onto an entangled

state. In doing so, users are able to change the meaning of a quantum state on the

fly, and create complex classical-quantum hybrid algorithms.

Being written in Perl, native serialization libraries would certainly be capable

of encoding Quantum::Entanglement variables for transmission. Indeed, native pro-

tocols would be capable of transmitting these serialized variables. However, once

transmitted, the quantum variables are decoupled. The library does not include a

mechanism for simulating entangled states across distributed systems.

While Quantum::Entanglement has an interesting set of features and met our

requirement for serialization of data structures, we chose not to pursue it as a basis

for our simulator because of the weak variable binding and lack of native support for

www.manaraa.com

51

quantum gates, such as Sigma, Hadamard, and CNOT gates.

We examined three other quantum simulators during our research. QCL, jQuan-

tum, and pyQu each take a different approach to the task of quantum simulation.

It should be said that all of the tools we examined are commendable for their inno-

vation and highly recommended to anyone wanting to explore more with quantum

computing algorithms and concepts. We encourage readers to test out each of these

libraries for themselves. Our research has a very specific goal and intention; that no

existing tool could meet this goal should not diminish these works in the least.We

have simply taken aim at a different aspect of the simulation problem.

4.2.2 QooSim

Research into other simulators and experience with libquantum lead first to an at-

tempt to extend the functionality of that library. The primary goal for the simulator

was to enhance the practicality and usability of the library. This goal included the

conversion of the library into an object oriented paradigm as well as the addition

of support for quantum networks. The object oriented paradigms of encapsulation,

information hiding, and interfaces are natural tools for representing quantum data.

These tools provide the mechanisms to enforce the consequences of quantum mechan-

ics, such as the no-cloning theorem and destructive measurement. Since the original

libquantum library was written in C, one of the more obvious language choices for an

object oriented port was C++.

In our preliminary research using libquantum, we had created a networked pair

of binaries, representing the two sides of a BB84 exchange. All communication was

through the raw C socket libraries. While this approach was effective enough for

implementing a simple example of a single protocol, it was lacking in extensibility.

When implementing a simulator, the network layer could have been left undefined,

delegating this task to users of the library, but this hardly seemed to help the usability

www.manaraa.com

52

goal. A developer working in the library should already have the tools necessary to

readily send a qubit from one system to another without having to worry about the

implementation details.

It would have been possible to create a networking protocol for use in the simu-

lator, but this seemed redundant. What the simulator needed was a way to serialize

objects into a transmittable data format, a conduit for sending data to a remote

system, and a method of unserializing that data on the remote system. This is a

problem which has been solved many times over; several libraries exist for serializing

data. We selected Google Protocol Buffers because of the native support for C++

along with several other languages, the ease of data definition, and the compatibility

with a transmission mechanism in the Google Remote Procedure Call (gRPC) library.

4.2.3 Major Structures

The QooSim simulator itself is composed of three major components. Each of these

components is encapsulated in a C++ namespace or class. The Quantum namespace

is responsible for the representation of Qubits. Measurement and gate operations also

take place within this namespace. This component is sufficient to simulate quantum

operations not requiring transmission across a network. The Quantum namespace

went through three major revisions, described further below.

Networking, serialization, and transmission all fall within the QuantumChan-

nel namespace. This component consists of a Google .proto file, which defines the

serialized data. A pair of classes, ChannelService and ChannelService client handle

the receiving and sending of data along with the unserializing and serializing data,

respectively. The final class, ChannelListener, is responsible for listening for network

messages and passing them to the ChannelService class for processing.

The final component is the System class. This class manages an object imple-

menting the iRunnable interface. Developers working with QooSim define a class

www.manaraa.com

53

implementing iRunnable to express their algorithm. The System class is responsible

for starting a ChannelListener, and executing the iRunnable object’s Run method.

The System class is implemented using the singleton pattern. It additionally tracks

quantum memory instantiated in the system and queues messages. When a Qubit is

received by the ChannelService, the System will add it to the memory map, say at

position N and also place a message in the queue to indicate that a Qubit has been

received, and is available at position N in the map. The iRunnable class implemen-

tation should then periodically query the message queue to retrieve received Qubits

for processing.

Figure 4.2 demonstrates the interactions between the major components of QooSim,

in the context of receiving a QuantumMessage. In earlier iterations, a QuantumMes-

sage was some form of register object; in current iterations, it is a Qubit object.

Figure 4.2: Interaction between major components of QooSim.

1. The system starts a thread for the ChannelListener object, which is bound to

a ChannelService class, and starts a user runnable object

2. A quantum message is received from the network by the listener thread.

www.manaraa.com

54

3. The ChannelService method associated to the quantum message type processes

the message. Data is deserialized and objects are created as appropriate using

classes in the Quantum namespace.

4. The ChannelService method adds a message in the System’s message queue,

announcing the creation of new data and providing a reference to that data

5. Meanwhile, the user runnable has been polling for messages.

6. If a message is found, the runnable is responsible for processing objects created

as a result of that message.

4.2.4 Iteration 1 - Registers & Nodes

The initial implementation of the Quantum component was a direct port of libquan-

tum. The basic functional unit was defined in the Register class. The Register

represents a quantum system of a specified bit-width. Internally, a Register consisted

of a series of Node objects, each of which represented a possible state for the register.

Each Node, in turn, had an associated state and probability. These structures are

shown in figure 4.3.

The Register class provides methods for manipulating the quantum state by

application of Matrix or Gate objects. Gate objects were simply predefined matrices

packaged into the library, such as Sigma, Rotational, and Hadamard. Although the

Register object also provided methods for converting a Register to and from a Matrix

object, Matrix multiplication was not used internally in libquantum. Instead, a series

of loops and conditionals were used to mimic matrix multiplication. Presumably,

there was a performance gain in avoiding a pair of conversions for each operation. As

such, our initial implementation followed this design.

Libquantum provides three functions for measurement, which were ported ex-

actly. All of the measurement functions are based on generating a random number

www.manaraa.com

55

Figure 4.3: Register & Node structures in iteration 1.

between zero and one. The built in C rand function is used to set a threshold value.

The first function performs a measurement of the entire quantum state. All node

probabilities are collected and summed until the random number threshold is hit.

The state contained in the node which broke the random threshold is returned as the

result. All information in the entire register structure is then destroyed.

The last two measurement functions each measure only a single target bit in the

register. The functions are identical, except that one of them “preserves” the quantum

state of the measured bit, which is impossible in quantum mechanics. These functions

collect and sum the node probabilities for which the target bit is zero. If the sum is

less than the random number, the bit is determined to be a one. Otherwise, the bit is

a zero. In the case of the “non-preserving” measurement function, node probabilities

are rebalanced to reflect the measured bit.

While a single Register object was certainly capable of representing an entangled

state locally, many of the protocols in our research involved the transmission of halves

of entangled pairs. Examples of this behavior can be seen in some of the entanglement

based variations to BB84 [56] and in the Ekert91 protocol [57]. Quantum teleportation

www.manaraa.com

56

relies on the ability to split up the two halves of an entangled pair. If an entangled

system must be contained within a single object, and that entangled system is to

be shared between two distributed nodes, then that object must be managed in a

distributed fashion as well.

To support distributed entanglement, we first attempted to reframe the require-

ment. Rather than holding the entangled system within one object, the entanglement

model split the entangled qubits into a pair of registers, and created management ob-

jects to broker the relationship between them. The maintenance of an entangled state

across two distributed objects is described in section 4.1.2.

Figure 4.4: Entanglement structures in iteration 1.

The Register class was extended to implement the EntangledRegister class. The

EntangledRegister class contained a reference to an Entanglement object. The En-

tanglement object, in turn, related a pair of EntangledRegisters by way of a set of

EntanglementPair probability tables. The Entanglement was responsible for main-

taining communication between EntangledRegisters, and processing measurement op-

www.manaraa.com

57

erations. Each position in the related EntanglementRegister objects requires exactly

one EntanglementPair. An EntanglementPair manages four probabilities; one for

each possible combination of the related bit positions.

When a qubit is sent to a remote system, it is replaced with a stub object on the

local system. This stub object holds information about how to find and communicate

with the remote object. When a portion of the entangled state is measured, for

example, the Entanglement object calls the “notifyMeasurement” method of the stub

object, which in turn uses gRPC to communicate the measurement message to the

remote object.

The entanglement structures added in the first iteration were effective in enabling

bi-partite entanglement of qubits, with the additional stipulation that qubits in one

register only be entangled with a single qubit in the associated paired register. This

was a step forward in that the initial implementation only supported entanglement

within a single register. By the close of this iteration, QooSim supported network

transmission of qubits, including qubits in entangled pairs. However, the library still

suffered from the same memory consumption limitations as the original libquantum.

For example, the BB84 implementation was limited to processing qubits in bursts of

16-bit registers.

4.2.5 Iteration 2 - Registers & Qubits

The second iteration of QooSim focused on combatting the memory consumption issue

by replacing the underlying structures of a Register object. In the realm of quantum

key distribution and quantum communication, absent error correction mechanisms,

most streams of qubits exist as unentangled entities. For example, when sending a

key using the pure theoretical implementations of BB84 or Kak06 protocols, there

is no reason to entangle any of the qubits [23, 24, 37, 39]. Even in protocols such as

Ekert91, which use entanglement, qubits are entangled into pairs, with one half of

www.manaraa.com

58

the pair being transmitted.

The Node object structure underlying libquantum and the initial implementation

of QooSim is idealized to represent a system entangled to the degree of the width of

the register. In an application in which no two bit positions within the same register

are entangled, only log2(n) nodes will have nonzero amplitudes, while 2n nodes are

held within the register. Fully 2n−log2(n) nodes have a probability value of zero. This

means that under these applications, memory consumption will grow exponentially,

while the actual information represented will grow linearly. As the width of the

Register object grows, the efficiency of the Node representation diminishes rapidly.

To optimize the simulator for quantum communication and key distribution pro-

tocols, the Node object representation was removed in favor of a Qubit object rep-

resentation. Each bit in a register was represented by a distinct Qubit object. The

Qubit contained just one property; the alpha value, or probability amplitude of the

zero state. Measurement and application of Matrix or Gate operations deferred to

the Qubit object itself. A measurement of the entire register was reimplemented as

a shorthand method for measuring each Qubit object in turn.

The efficiency gain was impressive. Instead of being limited to 22-bit wide reg-

isters as with libquantum, registers 50 times as large were easily possible. However,

these improvements were not without cost in functionality. Because each bit in the

register was now a distinct entity, and the combination of these entities was not

possible, no longer could qubits within the same register be entangled. Addition-

ally, the second iteration was still limited by the same conditions on entanglement as

the first; only qubits belonging to a related pair of Register objects were capable of

entanglement.

www.manaraa.com

59

4.2.6 Iteration 3 - Qubits & State Vectors

As our research moved into the realms of quantum error correction syndrome codes

and quantum repeater implementation through teleportation, it became increasingly

important not only to support multipartite entanglement in a distributed environ-

ment.

The third iteration of QooSim is a dramatic departure from the libquantum roots.

In fact, this iteration turns the representation of quantum states quite literally upside

down. Instead of interacting with a Register object, developers working with QooSim

manipulate Qubits directly. In fact, there is no register object in the third iteration.

This iteration is extremely promising, offering the efficiency of the second iteration

without the artificial restrictions imposed by the Entanglement object’s management.

Figure 4.5: Structure of state & vector classes in iteration 3.

This third iteration is the closest to a theoretical model of distributed quantum

www.manaraa.com

60

Qubit Representation Efficiency
Iteration 1
(register of nodes)

Iteration 2
(register of qubits)

Iteration 3
(state vector)

Floats States Floats States Floats States
non-entangled
qubits

65536 2 16 32 16 32

bi-partite
entangled qubits

65536 4 80 32 32 32

maximally
entangled qubits

65536 65536 N/A N/A 65536 65536

Table 4.1: Efficiency of representing degrees of entanglement using structures capable of
maintaining at least 16 qubits, by iteration.

interactions to date. Distributed interactions are still based around the asynchronous

model presented in section 4.1.2. However, due to greater degrees of entanglement,

these interactions are not limited to only two parties. Indeed, a three party telepor-

tation system can be demonstrated as in appendix A.2.

The greater degrees of entanglement are enabled through an abstraction layer

riding below the qubits to represent system state, instead of above them. Rather

than positioning the developer to interact with the system state, it is arguably more

natural that they should interact with individual Qubit objects. The Qubit objects,

in turn, are no longer simply holders of an alpha value, but pointers to a “position”

in a StateVector object.

At first, this paradigm shift may seem to be simple semantics. However, the

StateVector also implemented a degree of intelligence. Gate or matrix operations

are still initiated on the individual Qubit object. The arguments to the operation,

including the Qubit from which is used to initiate the operation if necessary, are

passed as a vector. This call is delegated to the StateVector object. The StateVector

object then determines whether or not it holds information for all Qubits passed as

arguments. If it does not, it merges StateVector objects from other arguments into

itself. Conversely, at the close of an operation or when processing a measurement,

the StateVector will dynamically split itself if it detects unentangled bit positions.

www.manaraa.com

61

There are two important consequences of this architecture. First, it is possible

to simulate multipartite entanglement at will. Second, memory consumption is op-

timized so that the exponential consumption only takes place when it is required by

entanglement, while linear, non-entangled consumption is the norm.

Dynamic allocation of vector space

Vector space is dynamically increased to accommodate any operation being performed

on a Qubit represented by the StateVector. By design choice, StateVector of the first

Qubit argument becomes the “host” of the operation. The StateVectors of all other

Qubit arguments are folded into the host’s StateVector by application of a matrix

tensor product. The position values of “guest” Qubit objects are updated to reflect

their new positions within the “host” StateVector, and the guest’s former StateVectors

are deallocated and destroyed.

Dynamic deallocation of vector space

At the conclusion of each quantum operation or measurement, the reduce method is

called. This method searches through the StateVector for any positions which do not

have an amplitude for more than one value; a Qubit which is always zero or always

one. Such a Qubit can be factored out of the StateVector. The reduce method shifts

positions in the StateVector so that the Qubit is in the most significant position. The

reduce method allocates a new StateVector for this Qubit, and then erases it from

the current StateVector. The remaining StateVector is divided in half. The top half

is retained if the factored Qubit was valued one, the bottom half if it was valued

zero. Positions of all remaining qubits are adjusted to reflect the change in the logical

layout of the StateVector.

www.manaraa.com

62

4.3 QooSim in Practice

This section contains practical analysis of several quantum protocols using the third

iteration of the QooSim system. As the system is still very new, some bugfixes were

made throughout the simulations. Each simulation was re-run following bugfixes.

An outstanding problem remaining is the growth of search-space for quantum

memory address management. The memory system is currently implemented as a

C++ vector of memory map objects. To find a given object by state vector index

and position, on average, N comparisons must be executed. In a protocol such as

BB84, over 2,000 qubits may be needed to generate a 1024 bit key. Certain allowances

were made to compensate for these requirements over repeated runs. Where possible,

protocols were executed twenty to one-hundred times by a single process. Some

protocols, such as Kak06, required the use of specialized “test harness” shell scripts

for these repeated runs.

The purpose of these simulations was to examine the security and efficiency of

quantum cryptographic protocols under non-ideal conditions. The results of these

simulations can provide useful additional information to an ongoing conversation

about the limits on security of these protocols [69,72].

www.manaraa.com

63

4.3.1 BB84

Eavesdropping Error Analysis

Figure 4.6: BB84 Efficiency against an eavesdropper, where E N is the percentage of
qubits the eavesdropper measures.

Figure 4.7: BB84 Efficiency against an eavesdropper, lines of fit for average, minimum
and maximum values at each interval.

www.manaraa.com

64

The classic implementation of BB84 was executed under several different condi-

tions. The protocol was tested against a simulated eavesdropper. The eavesdropper

was implemented as a channel interface object which accepted a parameter for fre-

quency of measurement. Tests were executed at frequency intervals of five percent.

The scatter plot in figure 4.6 shows the results of this simulation. Figure 4.7 shows

the same data with a line of best fit for average performance, two standard deviations,

and boundaries for minimum and maximum values.

The results are more or less linear, with a fanning out towards the higher error

rates, which reflects more entropy in the system. Efficiency of the BB84 protocol un-

der eavesdropping appears to be bounded by around 40%, with a worst case scenario

of 10%. Based on this analysis, if Alice and Bob have a perfect channel, they may

begin to suspect that an eavesdropper is present if efficiency is below 35%.

Amplitude Damping Error Analysis

Figure 4.8: BB84 Efficiency against amplitude damping, where the amplitude damping
factor is the percentage of qubits affected by amplitude damping.

www.manaraa.com

65

Figure 4.9: BB84 Efficiency against an amplitude damping, lines of fit for average,
minimum and maximum values at each interval.

Next, BB84 was tested against amplitude damping (figure 4.8 and 4.9). Am-

plitude damping was constant across all qubits used in communication. Factors in

intervals of .05 were used against the classic version of the protocol in an eavesdrop-

per free channel. The outcome is now a gently sloping curve, terminating in zero

efficiency at an amplitude damping factor of 100%. What’s most useful about this

scenario are the test factors .1, .9, and .99. If amplitude damping truly does grow

exponentially with distance, these factors represent efficiency at distances of d, 2d,

and 3d.

Rotational Error Analysis

www.manaraa.com

66

Figure 4.10: BB84 Efficiency against rotational errors, shown as ω degrees of rotation.

Figure 4.11: BB84 Efficiency against rotational errors, lines of fit for average, minimum
and maximum values at each interval.

The simulated run of BB84 against rotational errors was constructed such that

rotation was constant across all qubits used in communication. Rotations of 0 to

90 degrees were evaluated at intervals of 5 degrees. At the outset, BB84 appears to

be affected by rotational affected by rotation in much the same way as amplitude

www.manaraa.com

67

damping and eavesdropping. However, once the rotational degree grows above 10

degrees, BB84 experiences a severe drop-off in efficiency, bottoming out at 45 degrees

rotation. If satellite communications are to implement BB84, they must implement

some compensation for the rotational errors which expected from these communica-

tion platforms.

Comparative and Combined Error Condition Analysis

Figure 4.12: BB84 efficiency against amplitude damping compared to eavesdropping and
rotational errors.

Figure 4.12 shows the average lines for BB84 performance against eavesdropping,

amplitude damping, and rotation, separately. It is notable that efficiency suffers al-

most immediate drop off under rotation and a more gradual drop off under amplitude

damping at 50% attenuation. Meanwhile, the efficiency drop off under eavesdropping

is steady and gradual. These results imply that even slight rotational errors can have

a significant impact on the security of BB84. Figure 4.13 explores the interaction of

amplitude damping and eavesdropping in detail.

www.manaraa.com

68

Figure 4.13: BB84 Efficiency against amplitude damping with eavesdropping. Amplitude
damping varies from 0 to 100 along the horizontal axis, while eavesdropping is held

constant. The lines labeled as En mark eavesdropping at a rate of n.

BB84 was simulated against an amplitude damping channel with an eavesdrop-

per present. The amplitude damping factor was varied from 0 to 1 at intervals of

.05, and computed for eavesdropper persistencies from 0 to .50, at intervals of .10.

Two-thousand test cases were run for each permutation. For this simulator, the

eavesdropper was configured to be close to the recipient’s end of the communication

channel.

The graph in figure 4.13 shows the average performance with amplitude damping

but with 0 eavesdropper persistence as a thick, solid black line. One standard devia-

tion from the average is plotted as a thick, solid, dark grey line, while two standard

deviations from average is plotted as a thick, solid light grey line. The maximum and

minimum for the cases run is plotted as a thin black line with “x” marks. Finally,

the eavesdropper test cases are shown in thin, blue lines. The lines start from the left

access in descending order; that is, the .10 persistence case is the top most thin blue

www.manaraa.com

69

line, and the .50 persistence case is the bottom most thin blue line.

This plot is very insightful, as it give us some idea about the security tolerance

of BB84 under amplitude damping. For example, if we expect 50% signal loss due to

amplitude damping, and we configure BB84 to accept two standard deviations below

the average performance, we are accepting the risk of an eavesdropper intercepting

up to 30% of the qubits sent. If, instead, we configure for minimum simulated per-

formance, we are accepting the risk of an eavesdropper intercepting 50% or more of

the qubits sent.

4.3.2 Kak06

The Kak06 protocol is fast! Transmission rate governors were required to keep the

two parties in the protocol from interrupting each other. Communication was limited

to 128 qubit bursts, after which a 1 second “cooldown” was implemented. The Kak06

protocol was implemented using the Ry (θ) gate as the secret unitary transformation,

with θ varying between 0 and 45 degrees with each bit transmitted. Data was assumed

to be classical, and efficiency calculations are based on the outcome of a measurement

operation following the bit exchange. Errors were simulated uni-directionally; that

is, for only the passes from Alice to Bob.

Rotational error was simulated between 0 and 55 degrees, varying at 5 degree

intervals. The results, shown in figure 4.14 and 4.15 are somewhat surprising. At first,

the curve mimics the efficiency curves of BB84. However, after reaching a rotational

error of 45 degrees, the efficiency surprisingly begins to rise again.

Kak06 differs from BB84 in two important ways. First, one must remember that

BB84 has a built-in efficiency handicap of 50% due to base mismatching. Kak has an

advantage here, in that this protocol should be at least 50% efficient, which matches

the graph’s lower bound. Second, Kak06 actually makes three quantum transmissions

for each qubit generated. When we simulate an error rotation of 45 degrees on the

www.manaraa.com

70

channel, the qubit is actually rotated by 90 degrees off of normal, since it makes two

passes through the affected channel. Therefore, assuming constant channel dynamics,

the worst case for Kak06 would be rotational errors of odd multiples of 45: 45, 135,

etc.

Another interesting feature of Kak06 is that the results for a fairly tightly bound

band in 4.15. Presumably, if two parties knew the expected error rotation on their

channel, this would make eavesdropper detection a simpler task.

Previous test cases show similar results for amplitude damping 4.16. Again, the

multiple passes of the Kak06 protocol contribute to a strange “recovery” in efficiency,

if not reliability. In the case of amplitude damping, this recovery is bounded by 75%,

as all qubits in the damping channel are drawn towards zero. The trough in this

graph, around 60%, represents the case where two passes are affected by damping,

but the third is not. Again, Kak06 exhibits a very tight bounding of errors.

Figure 4.14: Kak06 efficiency against rotation, scatter plot.

www.manaraa.com

71

Figure 4.15: Kak06 efficiency against rotation, average, minimum and maximum
efficiency.

Figure 4.16: Kak06 efficiency against amplitude damping, average, minimum and
maximum efficiency.

www.manaraa.com

72

Chapter 5

Conclusions

Quantum computing is a field vastly apart from classical ideas about how informa-

tion processing systems should behave. The mechanics which govern it are often

counter-intuitive and without classical analogues. Even on a conceptual basis, quan-

tum computing presents quite a challenge to those who wish to study its workings.

Adding to the difficulty is a lack of available systems on which to experiment.

In this thesis, we have presented a background for understanding the basic con-

cepts of quantum computing, including methods for representing and manipulating

quantum bits. We have discussed two traits of quantum systems which are vital to

the security of quantum cryptographic protocols: measurement and no-cloning, and

have introduced the exotic idea of entanglement.

In our discussion of physical implementations for quantum systems, we presented

several alternative mechanisms. We introduced these systems in order to provide

a backdrop for discussion of quantum protocols and the types of errors to which

quantum systems are subjected. We selected photonic quantum bits as the de facto

implementation context for the remainder of the paper, as they are the most ideal

type for communication.

Sections 3.1 and 3.2 presented the reader with a variety of well known quantum

www.manaraa.com

73

communication protocols and methods for modeling errors over quantum channels.

These protocols showed methods for encoding data onto quantum channels to support

key agreement or direct communication. Teleportation we presented to show a method

by which entanglement and classical communications can be brought together to

extend the range of a quantum network.

This factor motivated us to develop a system capable of simulating a generalized

quantum computer reasonably well under a variety of circumstances. One key scenario

for us was the transmission of entangled states across distributed network systems.

This capability is key for simulating some of the available quantum communication

protocols in and of themselves, and is universally required for the error detection

or correction mechanisms examined in this thesis. In section 4.1.2, we presented an

original proof of the equivalence of asynchronous operations of quantum states to

traditional methods. This proof was the tool which allowed us to proceed in the

development of our simulator.

Our development of QooSim is still evolving, but at this stage, we have shown

it to be mature enough to simulate several of the common quantum protocols and

channel conditions. Section 4.2 describes the development of the simulator from

research through initial implementations to present state. The major structures of

the system are outlined and their interactions detailed. In section 4.3, we demonstrate

some of the algorithms QooSim is capable of simulating. Additionally, we show the

effects of different types of channel errors on quantum communication protocols.

The simulator is flexible enough to allow end-users to add their own applications

to the system without being concerned with the underlying simulator structures. We

sincerely hope that through continued development of this simulator and the research

we are able to accomplish with it that we can expose more learners and researchers

to the world of quantum computing.

www.manaraa.com

74

5.1 Future Work

Future work may include the continuing to expand the usability of the simulator by

streamlining the iRunnable interface. Improvement should be investigated in terms

of implementing more advanced memory management strategies to support “contin-

uously up” server models. Documentation and addition to the protocols included in

this toolkit, will provide a greater breadth of learning experience. One of key goal

would be to create a system or method for the visualization of quantum entangled

information as it is used in algorithms and protocols across a network.

www.manaraa.com

75

Reference

[1] Vitanyi, Paul.“The quantum computing challenge.” Informatics. Springer Berlin

Heidelberg, 2001.

[2] Gershenfeld, Neil and Chuang, Isaac. “Quantum Computing with Molecules”.

Scientific American 278.6 (1998): 66-71.

[3] Shor, Peter W. “Polynomial-time algorithms for prime factorization and discrete

logarithms on a quantum computer.” SIAM Journal on Computing 26.5 (1997):

1484-1509.

[4] C. H. Bennett and G. Brassard, “Quantum cryptography: Public-key distribu-

tion and coin tossing” Proceedings of IEEE International Conference on Com-

puters, Systems and Signal Processing , Bangalore, India, 1984, IEEE Press

(1984):175–179.

[5] C.H. Bennett and G. Brassard, “Quantum public key distribution,” IBM Tech-

nical Disclosure Bulletin 28, 3153–3163 (1985).

[6] Dieks, D. G. B. J.“Communication by EPR devices.” Physical Review A 92.6

(1982): 271-272.

[7] M. Born (editor), The Born-Einstein-Letters, Macmillan, London(1971): 158.

[8] J. M. P. Armengol, H. Weinfurter, C. Barbieri, W. Leeb, J. G. Rarity, G. Baister,

T. Schmitt-Manderbach, R. Ursin, T. Jennewein, M. Aspelmeyer, M. Pfennig-

www.manaraa.com

76

bauer, L. Cacciapuoti, O. Minster, C. Matos, B. Furch, A. Zeilinger, “Quantum

communications at ESA: Towards a space experiment on the ISS”, Acta Astro-

nautica, 2008: 165 – 178.

[9] Ekert, Arthur. “Quantum Cryptography Based on Bell’s Theorem.” Physical

Review Letters 67-661. Aug 1991.

[10] Branciard, Cyril; Gisin, Nicolas; Kraus, Barbara; Scarani, Valerio.“Security of

Two Quantum Cryptography Protocol Using the Same Four Qubit States”. Phys-

ical Review A 72-3. Sept 2005.

[11] Bennett, Charles H. and Wiesner, Stephen J. “Communication via one- and two-

particle operators on Einstein-Podolsky-Rosen states.” Physical Review Letters

69-20. Nov 1992.

[12] Braunstein, Samuel L.“Quantum error correction for communication with linear

optics.” Nature 394.6688 (1998): 47-49.

[13] Reed, M. D., et al.“Realization of three-qubit quantum error correction with

superconducting circuits.” Nature 482.7385 (2012): 382-385.

[14] Chuang, Isaac L., and Yoshihisa Yamamoto.“Quantum bit regeneration.” Phys-

ical Review Letters 76.22 (1996): 4281.

[15] Briegel, H-J., et al.“Quantum repeaters: The role of imperfect local operations

in quantum communication.” Physical Review Letters 81.26 (1998): 5932.

[16] Zhao, Zhi, et al.“Experimental realization of entanglement concentration and a

quantum repeater.” Physical Review Letters 90.20 (2003): 207901.

[17] Gottesman, Daniel.“Class of quantum error-correcting codes saturating the

quantum Hamming bound.” Physical Review A 54.3 (1996): 1862.

www.manaraa.com

77

[18] Davies, Paul Charles William, and Julian R. Brown. The ghost in the atom:

a discussion of the mysteries of quantum physics. Cambridge University Press,

1993.

[19] Scarani, Valerio, et al.“Quantum cryptography protocols robust against photon

number splitting attacks for weak laser pulse implementations.” Physical Review

Letters 92.5 (2004): 057901.

[20] Jaeger, Gregg. Quantum Information. Springer New York, 2007.

[21] Faye, Jan,“Copenhagen Interpretation of Quantum Mechanics”, The Stanford

Encyclopedia of Philosophy (Fall 2014 Edition), Edward N. Zalta (ed.), URL =

http://plato.stanford.edu/archives/fall2014/entries/qm-copenhagen/.

[22] Horodecki, Ryszard, et al.“Quantum Entanglement.” Reviews of Modern Physics

81.2 (2009): 865.

[23] Desurvire, Emmanuel. Classical and Quantum Information Theory. Cambridge

University Press, 1st Edition. 2009.

[24] Nielsen, Michael A and Chuang, Isaac L. Quantum Computation and Quantum

Information. Cambridge University Press 10th Edition. 2010.

[25] Ladd, Thaddeus D., et al.“Quantum Computing.” arXiv preprint

arXiv:1009.2267 (2010).

[26] Gao, W. B., et al.“Observation of entanglement between a quantum dot spin

and a single photon.” Nature 491.7424 (2012): 426-430.

[27] Morton, John JL, et al.“Solid-state quantum memory using the 31P nuclear

spin.” Nature 455.7216 (2008): 1085-1088.

[28] Saeedi, Kamyar, et al.“Room-temperature quantum bit storage exceeding 39

minutes using ionized donors in silicon-28.” Science 342.6160 (2013): 830-833.

www.manaraa.com

78

[29] Menicucci, N. C., and Carlton M. Caves.“Local realistic model for the dynamics

of bulk-ensemble NMR information processing.” Physical Review Letters 88.16

(2002): 167901.

[30] Ma, Xiao-Song, et al.“Quantum teleportation over 143 kilometres using active

feed-forward.” Nature 489.7415 (2012): 269-273.

[31] Stucki, Damien, et al.“High rate, long-distance quantum key distribution over

250 km of ultra low loss fibres.” New Journal of Physics 11.7 (2009): 075003.

[32] Gisin, Nicolas.“How far can one send a photon?” Frontiers of Physics 10.6 (2015):

1-8.

[33] Comandar, L. C., et al.“Room temperature single-photon detectors for high bit

rate quantum key distribution.” Applied Physics Letters 104.2 (2014): 021101.

[34] Elliott, Chip, et al.“Current status of the DARPA quantum network.” Defense

and Security. International Society for Optics and Photonics, 2005.

[35] Elliott, Chip.“The DARPA quantum network.” Quantum Communications and

cryptography (2006): 83-102.

[36] C. H. Bennett and G. Brassard, “Quantum cryptography: Public-key distri-

bution and coin tossing” in Proceedings of IEEE International Conference on

Computers, Systems and Signal Processing, Bangalore, India, 1984, (IEEE Press,

1984), pp. 175–179.

[37] Gisin, Nicolas, et al.“Quantum cryptography.” Reviews of Modern Physics 74.1

(2002): 145.

[38] Ilic, Nikolina.“The Ekert protocol.” Journal of Phy334 1 (2007): 22.

[39] Kak, Subhash.“A three-stage quantum cryptography protocol.” Foundations of

Physics Letters 19.3 (2006): 293-296.

www.manaraa.com

79

[40] Wu, Linsen, and Yuhua Chen.“Three-Stage Quantum Cryptography Protocol

under Collective-Rotation Noise.” Entropy 17.5 (2015): 2919-2931.

[41] Devitt, Simon J., William J. Munro, and Kae Nemoto.“Quantum error correction

for beginners.” Reports on Progress in Physics 76.7 (2013): 076001.

[42] Sharma, Rishi Dutt, et al.“Which verification qubits perform best for secure

communication in noisy channel?.” Quantum Information Processing (2015): 1-

16.

[43] R. B. Griffiths, “Quantum Channels, Kraus Operators, POVMs,” Quantum

Computation and Quantum Information Theory Course Notes, Carnegie Mel-

lon University (2010).

[44] Qin, SuJuan, et al.“Quantum secure direct communication over the collective

amplitude damping channel.” Science in China Series G: Physics, Mechanics

and Astronomy 52.8 (2009): 1208-1212.

[45] Whaley, Brigitta Mixed States and Density Matrix, Entanglement measures.

Internet: https://inst.eecs.berkeley.edu/ cs191/fa09/lectures/lecture13 fa09.pdf

[27 Mar 2016]

[46] Yanofsky, Noson S, Mannucci, Mirco A.“Quantum Computing for Computer

Scientists.” Cambridge University Press, 2013.

[47] Hughes, Richard J., et al.“Practical free-space quantum key distribution over 10

km in daylight and at night.” New Journal of Physics 4.1 (2002): 43.

[48] C. Bonato, M. Aspelmeyer, T. Jennewein, C. Pernechele, P. Villoresi, and A.

Zeilinger, ”Influence of satellite motion on polarization qubits in a Space-Earth

quantum communication link,” Opt. Express 14, 10050- 10059 (2006).

www.manaraa.com

80

[49] Wang, Gang, et al.“Polarization tracking for quantum satellite communications.”

SPIE Defense+ Security. International Society for Optics and Photonics, 2014.

[50] M. Aspelmeyer, T. Jennewein, M. Pfennigbauer, W. R. Leeb, A. Zeilinger, “Long

distance quantum communication with entangled photons using satellites”, IEEE

J. Sel. Top. Quantum Electron. 9, 1541 (2003)

[51] Van Meter, Rodney, et al.“System design for a long-line quantum repeater.”

IEEE/ACM Transactions on Networking (TON) 17.3 (2009): 1002-1013.

[52] Azuma, Koji, Kiyoshi Tamaki, and Hoi-Kwong Lo.“All-photonic quantum re-

peaters.” Nature Communications 6 (2015).

[53] Kwiat, Paul G., et al.“Ultrabright source of polarization-entangled photons.”

Physical Review A 60.2 (1999): R773.

[54] Vazirani, Umesh. Lecture 2: Quantum Algorithms. Internet:

http://www.cs.berkeley.edu/ṽazirani/s09quantum/notes/lecture2.pdf [20

Jul 2015].

[55] Moore, Michael G. Lecture 24: Tensor Product States. Internet:

http://www.pa.msu.edu mmoore/Lect24 TensorProduct.pdf [23 Jul 2015].

[56] C. H. Bennett, G. Brassard, and N. D. Mermin. “Quantum cryptography without

bell’s theorem.” Physical Review Letters. 68:557–559, Feb 1992.

[57] A. K. Ekert.“ Quantum cryptography based on bell’s theorem.” Physical Review

Letters. 67:661–663, Aug 1991.

[58] Bjorn Butscher, Hendrik Weimer (2015), http://www.libquantum.de/bibliography

[59] Gough, Alex. Quantum::Entanglement. Internet:

http://www.perl.com/pub/2001/08/08/quantum.html [10 oct 2015]

www.manaraa.com

81

[60] Brassard, Gilles, and Louis Salvail. “Secret-key reconciliation by public discus-

sion.” Advances in Cryptology—EUROCRYPT’93. Springer Berlin Heidelberg,

1993.

[61] Fiat, Amos, and Adi Shamir. “How to prove yourself: Practical solutions to

identification and signature problems.” Advances in Cryptology—CRYPTO’86.

Springer Berlin Heidelberg, 1986.

[62] Parakh, A. (2016) Quantum Cryptography: Overview. To appear in Encyclope-

dia of Information Assurance, Taylor and Francis.

[63] Subramaniam, P. and Parakh, A. (2016) A quantum Diffie-Hellman protocol,

International Journal of Security and Networks, Inderscience, In Press.

[64] Parakh, A. and vanBrandwijk, J. (2016) Correcting Rotational Errors in Three

Stage QKD, 23rd IEEE International Conference on Telecommunication (ICT

2016), Thessaloniki, Greece, May 16-18, 2016.

[65] Parakh, A. and vanBrandwijk, J. (2016) Rotational Error Correction in Three

Stage QKD, IEEE Communication Theory Workshop (CTW 2016), Nafplio,

Greece, May 15-18, 2016.

[66] Abhishek Parakh and Pramode Verma and Mahadevan Subramaniam. “Improv-

ing efficiency of quantum key distribution with probabilistic measurements.”

International Journal of Security and Networks 11 1-2. (2016): 37-47.

[67] Abhishek Parakh. “A probabilistic quantum key transfer protocol.” Security and

Communication Networks 6-11. (2013): 1389-1395.

[68] Abhishek Parakh. “New protocol for quantum public key cryptography.” 2015

IEEE International Conference on Advanced Networks and Telecommuncations

Systems (ANTS). (2015): 1-3.

www.manaraa.com

82

[69] Abhishek Parakh. “Quantifying the security of a QKD protocol” 2015 IEEE In-

ternational Conference on Advanced Networks and Telecommuncations Systems

(ANTS). (2015): 1-3.

[70] Parakh, Abhishek. “Quantum teleportation for keyless cryptography.” SPIE

Sensing Technology + Applications. International Society for Optics and Pho-

tonics, 2015.

[71] Mandal, Sayonnha, and Abhishek Parakh. “Implementing Diffie-Hellman key

exchange using quantum EPR pairs.”SPIE Sensing Technology+ Applications.

International Society for Optics and Photonics, 2015.

[72] Subramaniam, Pranav, and Abhishek Parakh. “Limits on detecting eavesdrop-

per in QKD protocols.” Advanced Networks and Telecommuncations Systems

(ANTS), 2014 IEEE International Conference on. IEEE, 2014.

[73] Subramaniam, Pranav, and Abhishek Parakh. “A quantum Diffie-Hellman proto-

col using commuting transformations.” Advanced Networks and Telecommunca-

tions Systems (ANTS), 2014 IEEE International Conference on. IEEE, 2014.

[74] Parakh, Abhishek, and Pulkit Verma. “Improving the efficiency of entanglement

based quantum key exchange.” Computer Communication and Networks (IC-

CCN), 2014 23rd International Conference on. IEEE, 2014.

[75] Parakh, Abhishek. “A quantum oblivious transfer protocol.” SPIE Optical En-

gineering+ Applications. International Society for Optics and Photonics, 2013.

www.manaraa.com

83

Appendix A

Source Code Listings

The listed source code is intended to enhance the reader’s understanding of criti-

cal portions of the QooSim library. Full source code can be found in the github

project located at https://github.com/vanbrandwijk/libquantum-oo in the multi-

qubitops branch, tagged as 0.3.2-alpha as of the release of this thesis. The StateVector

class is provided in this document, as it is the “heart and soul” of the Quantum names-

pace in iteration 3. This class is responsible for the matrix representation of quantum

states. Example runnables for teleportation and Kak06 protocol are also provided,

in order to demonstrate the ease of implementation with this library.

A.1 StateVector

/*

* stateVector.cpp

*/

//STD C++ includes

#include <algorithm >

#include <complex.h>

#include <math.h>

#include <stdlib.h>

#include <vector >

// QooSim Includes

#include "channelService_client.h"

#include "matrix.h"

#include "qubit.h"

#include "qubitMap.h"

#include "remotePeer.h"

www.manaraa.com

84

#include "stateVector.h"

#include "stateVectorOperation.h"

// External Includes

#include "externals/jacobi_eigenvalue.hpp"

using namespace std;

namespace Quantum {

/*

* StateVector

* Parameterless constructor , creates a StateVector of width 1

*/

StateVector :: StateVector () : StateVector (1) {

}

/*

* StateVector

* @param bitWidth the width of the vector

* Constructor , creates a vector with width equal to bitWidth

*/

StateVector :: StateVector(int bitWidth)

: qsv(1, pow(2, bitWidth)), remoteQubits(bitWidth) {

this ->qsv.set(0, 0, 1);

}

/*

* StateVector

* @param m a matrix object

* Constructor , creates a vector from the matrix object

*/

StateVector :: StateVector(Matrix m)

: qsv(m), remoteQubits(log(m.getRows ())/ log (2)) {

}

/*

* setIndex

* @param newIndex the input index

* Sets the memory map index of this vector

*/

void StateVector :: setIndex(int newIndex) {

this ->index = newIndex;

}

/*

* getIndex

* @return the memory map index of this vector

*/

int StateVector :: getIndex () {

return this ->index;

}

/*

* resize

* @param newSize

* Add space the the remoteQubits vector

*/

void StateVector :: resize(int newSize) {

this ->remoteQubits.resize(newSize);

}

/*

* applyOperation

* @param m operation a matrix operator

* @param input1 the position of the qubit to be operated on

* Shortcut method to apply an operation to one qubit already in

* this vector

*/

www.manaraa.com

85

void StateVector :: applyOperation(Matrix operation , int input1) {

vector <int > inputs (1);

inputs.at(0) = input1;

this ->applyOperation(operation , inputs);

}

/*

* applyOperation

* @param m operation a matrix operator

* @param input1 the position of a qubit to be operated on

* @param input2 the position of a qubit to be operated on

* Shortcut method to apply an operation to two qubits already in

* this vector

*/

void StateVector :: applyOperation(Matrix operation , int input1 , int input2) {

vector <int > inputs (2);

inputs.at(0) = input1;

inputs.at(1) = input2;

this ->applyOperation(operation , inputs);

}

/*

* applyOperation

* @param m operation a matrix operator

* @param inputs the positions of qubits to be operated on

* Apply an operation to an arbitrary number of qubits in this vector

*/

void StateVector :: applyOperation(Matrix operation , vector <int > inputs) {

this ->applyOperation(operation , inputs , true);

}

/*

* applyOperation

* @param operation a matrix operator

* @param inputs the positions of qubits to be operated on

* @param addToHistory whether or not to push this operation onto the

* vector ’s history

* Apply an operation to an arbitrary number of qubits in this vector

*/

void StateVector :: applyOperation(Matrix operation , vector <int > inputs ,

bool addToHistory) {

Matrix expandedOperation = operation;

unsigned int i;

vector <int > rowMap = generateRowMap(inputs);

Matrix scratch(this ->qsv.getCols(), this ->qsv.getRows ());

for (i = 0; i < rowMap.size (); i++) {

scratch.set(0, rowMap.at(i), this ->qsv.get(0, i));

}

for (i = inputs.size (); i < this ->getWidth (); i++) {

expandedOperation = Matrix :: matrixTensor(Matrix :: identity(),

expandedOperation);

}

scratch = Matrix :: matrixMultiply(expandedOperation , scratch);

for (i = 0; i < rowMap.size (); i++) {

this ->qsv.set(0, i, scratch.get(0, rowMap.at(i)));

}

if (addToHistory) {

this ->reduce ();

this ->opHistory.push_back(

StateVectorOperation(operation , inputs));

}

}

www.manaraa.com

86

/*

* applyOperation

* @param operation a matrix operator

* @param inputs the qubit objects on which to apply the operation

* Apply an operation to an arbitrary number of qubits , consolidating them

* into this vector first

*/

void StateVector :: applyOperation(Matrix operation ,

vector < shared_ptr <Qubit > > inputs) {

unsigned int i, j;

vector <int > inputPositions(inputs.size ());

QubitMap* m = QubitMap :: getInstance ();

//first , collect all the qubit state vectors into this vector

for (i = 0; i < inputs.size (); i++) {

int inputIndex = inputs.at(i)->v->index;

if (this ->index != inputIndex) {

Matrix temp = Matrix :: matrixTensor(

inputs.at(i)->v->qsv , this ->qsv);

for (j = 0; j < m->numQubits (); j++) {

if (inputIndex

== m->getQubit(j)->v->index) {

m->getQubit(j)->position =+

this ->getWidth ();

m->getQubit(j)->v =

shared_from_this ();

}

}

this ->qsv = temp;

}

}

//next , convert the vector of Qubits to a vector of ints and process

for (i = 0; i < inputs.size (); i++) {

inputPositions.at(i) = inputs.at(i)->position;

}

this ->applyOperation(operation , inputPositions);

this ->resize(this ->getWidth ());

}

/*

* generateRowMap

* @param inputs the inputs to generate a map for

* @return integer vector of the rowmap

* Generate a mapping of the rows in this vector in order to place the

* inputs provided in the left most positions

*/

vector <int > StateVector :: generateRowMap(vector <int > inputs) {

vector <int > positionMap(this ->getWidth (),-1);

vector <int > rowMap(this ->qsv.getRows (),0);

int i, j, zWidth;

zWidth = this ->getWidth () - 1;

for (i = 0; i < inputs.size (); i++) {

positionMap.at(inputs.at(i)) = i;

}

for (j = 0; j < positionMap.size (); j++) {

if (positionMap.at(j) == -1) {

positionMap.at(j) = i;

i++;

}

}

for (i = 0; i < this ->qsv.getRows (); i++) {

www.manaraa.com

87

rowMap.at(i) = 0;

for (j = 0; j < positionMap.size (); j++) {

rowMap.at(i) += (((i >> (zWidth - j)) % 2)

<< (zWidth - positionMap.at(j)));

}

}

return rowMap;

}

/*

* getWidth

* @returns the bit width of this vector

*/

int StateVector :: getWidth () {

return log(this ->qsv.getRows ()) / log (2);

}

/*

* print

* Prints this vector

*/

void StateVector :: print() {

printf ("Index: %i\r\n", this ->index);

this ->qsv.print ();

}

/*

* reduce

* Removed unentanged qubits from this vector , splitting them off

* into their own vectors

*/

void StateVector :: reduce () {

int i, j, k, firstValueFound , currentValue;

double DOUBLE_ZERO = .000001;

int zWidth = this ->getWidth () - 1;

bool isBitEntangled;

QubitMap* m = QubitMap :: getInstance ();

if (this ->getWidth () == 1) {

return;

}

for (i = this ->getWidth () - 1; i >= 0; i--) {

firstValueFound = -1;

isBitEntangled = false;

int zI = this ->getWidth () - 1 - i;

for (j = 0; j < this ->qsv.getRows (); j++) {

currentValue = StateVector :: isBitSet(j, zI);

if (abs(this ->qsv.get(0, j)) > DOUBLE_ZERO) {

if (firstValueFound == -1) {

firstValueFound = currentValue;

} else {

if (currentValue != firstValueFound){

isBitEntangled = true;

}

}

}

}

if (!isBitEntangled && this ->getWidth () > 1

&& firstValueFound != -1) {

Matrix scratch(this ->qsv.getCols(),

this ->qsv.getRows () / 2);

j = 0;

for (k = 0; k < this ->qsv.getRows (); k++) {

if (

www.manaraa.com

88

(firstValueFound == 1

&& StateVector :: isBitSet(k, zI))

|| (firstValueFound == 0

&& !StateVector :: isBitSet(k, zI))

) {

scratch.set(0, j, this ->qsv.get(0, k));

j++;

}

}

this ->qsv = scratch;

for (j = 0; j < m->numQubits (); j++) {

if (m->getQubit(j)->v->index

== this ->index &&

m->getQubit(j)->position == i) {

m->getQubit(j)->init ();

if (firstValueFound == 1) {

Matrix sigmaX = Matrix (2,2);

sigmaX.set(0, 1, 1);

sigmaX.set(1, 0, 1);

m->getQubit(j)->applyMatrix(sigmaX);

}

}

if (m->getQubit(j)->v->index

== this ->index &&

m->getQubit(j)->position > i) {

m->getQubit(j)->position --;

}

}

}

}

}

/*

* isBitSet

* @param index The index in the state vector

* @param position The bit position

* @return bool whether or not the bit position is set to zero or one

*/

bool StateVector :: isBitSet(int index , int position) {

return (int (index / pow(2, (position)))

% 2 == 1);

}

/*

* getAlpha

* @param position

* @returns alpha value for this bit

* Determine the overall alpha (0) probability amplitude of the

* bit position in this vector

*/

double StateVector :: getAlpha(int position) {

double alpha = 0.0;

int i;

for (i = 0; i < this ->qsv.getRows (); i++) {

if (!isBitSet(i, position)) {

alpha += pow(real(qsv.get(0, i)), 2) +

pow(imag(qsv.get(0, i)), 2);

}

}

return alpha;

}

/*

www.manaraa.com

89

* getBeta

* @param position

* @returns beta value for this bit

* Determine the overall beta (1) probability amplitude of the

* bit position in this vector

*/

double StateVector :: getBeta(int position) {

double beta = 0.0;

int i;

for (i = 0; i < this ->qsv.getRows (); i++) {

if (isBitSet(i, position)) {

beta += pow(real(qsv.get(0, i)), 2) +

pow(imag(qsv.get(0, i)), 2);

}

}

return sqrt(beta);

}

/*

* measure

* @param position the bit to measure

* @return the measured value

* Perform a pseudo random measurement of the bit given

*/

int StateVector :: measure(int position) {

int value = 0;

double measurement = rand() / (float)RAND_MAX;

if (this ->getAlpha(position) < measurement) {

value = 1;

}

return this ->measure(position , value);

}

/*

* measure

* @param position the bit to measure

* @param forceResult

* @return the measured value

* Perform a forced measurement of the bit given

*/

int StateVector :: measure(int position , int forceResult) {

this ->measure(position , forceResult , true);

}

/*

* measure

* @param position the bit to measure

* @param forceResult

* @param propagate

* @return the measured value

* Perform a forced measurement of the bit given ,

* propagating the measuredment to any remote peers

*/

int StateVector :: measure(int position , int forceResult ,

bool propagate) {

int i;

vector <int > peersNotified;

Matrix initialState(this ->qsv);

int zPosition = this ->getWidth () - 1 - position;

if (forceResult != 0) {

forceResult = 1;

}

www.manaraa.com

90

for (i = 0; i < this ->qsv.getRows (); i++) {

if (forceResult == 0 && this ->isBitSet(i, zPosition)) {

this ->qsv.set(0, i, 0);

}

if (forceResult == 1 && !this ->isBitSet(i, zPosition)) {

this ->qsv.set(0, i, 0);

}

}

if (propagate) {

for (i = 0; i < this ->getWidth (); i++) {

if (this ->remoteQubits.at(i). remoteSystem

!= "") {

QuantumChannel :: ChannelService_client

csc(this ->remoteQubits.at(i)

.remoteSystem ,

this ->remoteQubits.at(i)

.remotePort);

csc.SendMeasurementMessage(

this ->getIndex(),

position , initialState , forceResult);

}

}

}

this ->reduce ();

this ->normalize ();

return forceResult;

}

/*

* fromDensity

* @param rho the density matrix

* Convert a density matrix to a state vector

*/

void StateVector :: fromDensity(Matrix rho) {

int i, j;

int N = rho.getRows ();

double A[N*N];

double V[N*N];

double D[N];

int it_num;

int rot_num;

if (rho.getRows () != rho.getCols ()

|| rho.getRows () != this ->qsv.getRows ()) {

return;

}

for (i = 0; i < this ->qsv.getRows (); i++) {

this ->qsv.set(0, i, 0);

}

for (i = 0; i < N; i++) {

for (j = 0; j < N; j++) {

A[i*N + j] = real(rho.get(i, j));

}

}

jacobi_eigenvalue(N, A, 20, V, D, it_num , rot_num);

for (i = 0; i < N; i++) {

for (j = 0; j < N; j++) {

complex <double > temp = this ->qsv.get(0, j);

temp += D[i] * V[i*N+j];

this ->qsv.set(0, j, temp);

}

}

www.manaraa.com

91

}

/*

* toDensity

* @return the density matrix

* Convert this state vector to a density matrix

*/

Matrix StateVector :: toDensity () {

int i, j;

Matrix rho(this ->qsv.getRows(), this ->qsv.getRows ());

for (i = 0; i < this ->qsv.getRows (); i++) {

for (j = 0; j < this ->qsv.getRows (); j++) {

complex <double > temp = rho.get(i, j);

temp += this ->qsv.get(i, 0) * this ->qsv.get(j, 0);

rho.set(i, j, temp);

}

}

return rho;

}

/*

* normalize

* Normalize probability amplitudes across the state vector

*/

void StateVector :: normalize () {

int i;

double realPart = 0.0;

double imagPart = 0.0;

double total = 0.0;

for (i = 0; i < this ->qsv.getRows (); i++) {

realPart = real(this ->qsv.get(0, i));

imagPart = imag(this ->qsv.get(0, i));

total += realPart*realPart + imagPart*imagPart;

}

for (i = 0; i < this ->qsv.getRows (); i++) {

realPart = real(this ->qsv.get(0, i));

imagPart = imag(this ->qsv.get(0, i));

this ->qsv.set(0, i,

sqrt((realPart*realPart + imagPart*imagPart) / total));

}

}

void sync() {

}

/*

* toMatrix

* @return this vector as a matrix

*/

Matrix StateVector :: toMatrix () {

return this ->qsv;

}

/*

* replay

* Replay this state vector ’s history

*/

void StateVector :: replay () {

int i = 0;

for (i = 0; i < this ->opHistory.size (); i++) {

this ->applyOperation(

www.manaraa.com

92

this ->opHistory.at(i). getOperation (),

this ->opHistory.at(i). getArgs(),

false

);

}

this ->opHistory.clear ();

}

}

www.manaraa.com

93

A.2 Teleportation Runnable

/*

* teleportClientRunnable.cpp

*/

//STD C++ includes

#include <memory >

#include <stdio.h>

#include <string >

#include <utility >

#include <unistd.h>

#include <vector >

// Qoosim includes

#include "channelService_client.h"

#include "gates.h"

#include "system.h"

#include "qubit.h"

// Runnable header

#include "teleportClientRunnable.h"

using namespace std;

namespace Quantum {

/*

* Run

* @param none

* @returns none

* @sides teleports a qubit to a remote peer

*/

void TeleportClientRunnable ::Run() {

// Create three qubits in initial state |0>

shared_ptr <Qubit > q1 = Qubit:: create ();

shared_ptr <Qubit > q2 = Qubit:: create ();

shared_ptr <Qubit > psi = Qubit:: create ();

// Create a hadamard gate

Hadamard h;

// Create a y-rotational gate

Ry r(M_PI /3);

// Create a Cnot gate

CNot cn;

//Get the system object

System* sys = System :: getInstance ();

// Create a connection to the server

QuantumChannel :: ChannelService_client csc(

this ->serverIP ,

this ->serverPort);

// Rotate the payload qubit (this could be any operation)

psi ->applyMatrix(r);

// Violate the laws of physics and print psi

psi ->print ();

//Apply a hadamard to q1 , placing the qubit in a superposition

q1->applyMatrix(h);

// Entangle q1 and q2 by applying a Cnot gate

vector < shared_ptr <Qubit > > inputs;

inputs.push_back(q1);

inputs.push_back(q2);

q1->v->applyOperation(cn, inputs);

//Send q2 to the server

www.manaraa.com

94

csc.SendQubit(q2);

//Wait two seconds , for the server to get the qubit

sleep (2);

//Add the payload qubit to the entanglement by using Cnot

inputs.at(0) = psi;

inputs.at(1) = q1;

q1->v->applyOperation(cn, inputs);

//Apply a hadamard gate to the payload qubit

psi ->applyMatrix(h);

// Measure q1 and psi

int q1_result = q1->measure ();

int psi_result = psi ->measure ();

printf ("q1: %i, psi: %i\r\n", q1_result , psi_result);

/*

* Normally , here , we would send q1_result and psi_result to the server

* so that she could perform the encoded post -teleportation operation

*/

sys ->stopServer ();

}

}

www.manaraa.com

95

/*

* teleportServerRunnable.cpp

*/

//STD C++ includes

#include <memory >

#include <unistd.h>

#include <utility >

#include <stdio.h>

// Qoosim includes

#include "gates.h"

#include "qubit.h"

#include "qubitMap.h"

#include "system.h"

// runnable header

#include "teleportServerRunnable.h"

using namespace std;

namespace Quantum {

/*

* Run

* @param none

* @return none

*/

void TeleportServerRunnable ::Run() {

//Get the system object

System* sys = System :: getInstance ();

//Get the memory map object

QubitMap* qm = QubitMap :: getInstance ();

//Wait for a message to come in

while (sys ->isMessageQueueEmpty ()) {

}

//If the message is a quantum message , we assume it’s our half of q1q2

if (sys ->nextMessageType ()

== SystemMessage :: QUANTUM_DATA_RECEIVED) {

//Get the address of the received qubit

int address = sys ->nextMessage ();

// Retrieve the qubit from the address

shared_ptr <Qubit > q2 = qm ->getQubit(address);

//Wait 5 seconds for the client to do her operations

sleep (5);

// Violate the laws of physics and print the state of the qubit

q2->print ();

}

sys ->stopServer ();

}

}

www.manaraa.com

96

A.3 Kak06 Runnable

/*

* kakinitiator_runnable.cpp

*/

#include <unistd.h>

#include <time.h>

#include <math.h>

#include <stdio.h>

#include <string >

#include <vector >

#include "system.h"

#include "qubit.h"

#include "qubitMap.h"

#include "gates.h"

#include "channelService_client.h"

#include "kakinitiator_runnable.h"

#include "kakresponder_runnable.h"

using namespace std;

namespace Quantum {

void KakInitiator_Runnable ::Run() {

int i;

//count of errors (bits mismatched)

int errors = 0;

// vector for storing bits we sent

vector <int > bits;

// vector for storing rotational angles used to encode bits

vector <float > rotations;

// vector for storing qubits (scratch space)

vector < shared_ptr <Qubit > > q;

// quantum Sigma X gate

SigmaX sx;

//seed random , unique to this process

srand(time(NULL) / getpid ());

//get a reference to the system and qubit map

System* sys = System :: getInstance ();

QubitMap* qm = QubitMap :: getInstance ();

//set up connection to the server

QuantumChannel :: ChannelService_client csc(this ->serverIP ,

this ->serverPort);

//this implementation sends a key of fixed size , with all

//key -bits sent in serial

for (i = 0; i < KAK_KEY_SIZE; i++) {

// generate a random bit value {0, 1}

bits.push_back(round(rand() / (float)RAND_MAX));

// generate a random rotation value 0 < rotation <= 1

rotations.push_back ((rand() / (float)RAND_MAX) * M_PI /8.0);

// create a new qubit (initial value |0>)

q.push_back(Qubit:: create ());

//if the bit is to be a 1, apply a sigma -x gate

if (bits.at(i) == 1) {

q.at(i)->applyMatrix(sx);

}

// create a rotational gate

Ry r = Ry(rotations.at(i));

//apply the rotational gate

www.manaraa.com

97

q.at(i)->applyMatrix(r);

//send the qubit

csc.SendQubit(q.at(i));

}

// receive returned qubits

for (i = 0; i < KAK_KEY_SIZE; i++) {

//wait for the system to receive the qubit and put

//a message on the queue

while (sys ->isMessageQueueEmpty ()) {

}

//get the map address of the received qubit

int address = sys ->nextMessage ();

//store the received qubit in the scratch vector

q.at(i) = qm->getQubit(address);

}

//counter -rotate the returned qubits and resend

for (i = 0; i < KAK_KEY_SIZE; i++) {

// create the counter -rotational gate for this qubit

Ry r = Ry(-1.0* rotations.at(i));

//apply the counter -rotational gate

q.at(i)->applyMatrix(r);

// return the qubit

csc.SendQubit(q.at(i));

}

//this part is outside of Kak ’s protocol

//we’re going to receive the results from our peer

//and count how many errors were introduced

for (i = 0; i < KAK_KEY_SIZE; i++) {

//wait for a message on the queue

while (sys ->isMessageQueueEmpty ()) {

}

//get the map address of the received bit

int address = sys ->nextMessage ();

// return the data stored at the given address

string data = sys ->getClassicData(address);

//if the data received doesn ’t match our original

//bit vector , count it as an error

if (data == to_string(bits.at(i))) {

errors ++;

}

}

// output error statistics

printf ("%i, %i\r\n", KAK_KEY_SIZE , errors);

//stop the server thread

sys ->stopServer ();

}

}

www.manaraa.com

98

/*

* kakresponder_runnable.cpp

*/

#include <unistd.h>

#include <time.h>

#include <math.h>

#include <stdio.h>

#include <string >

#include <vector >

#include "system.h"

#include "qubit.h"

#include "qubitMap.h"

#include "gates.h"

#include "channelService_client.h"

#include "kakinitiator_runnable.h"

#include "kakresponder_runnable.h"

using namespace std;

namespace Quantum {

void KakResponder_Runnable ::Run() {

int i;

//to store the client ’s ip/port once they connect

string peerIP = "";

int peerServicePort = 0;

// vector for storing the bits we decode

vector <int > keyMaterial;

// vector for storing rotation bits we use to encode

vector <float > rotations;

// vector for storing qubits (scratch space)

vector < shared_ptr <Qubit > > q;

//seed random , unique to this process

srand(time(NULL) / getpid ());

//get a reference to the system and qubit map

System* sys = System :: getInstance ();

QubitMap* qm = QubitMap :: getInstance ();

// declared for client callback connection

QuantumChannel :: ChannelService_client* csc;

// receive qubits rotated by our peer

for (i = 0; i < KAK_KEY_SIZE; i++) {

// generate a random rotation value 0 < rotation <= 1

rotations.push_back ((rand() / (float)RAND_MAX) * M_PI / 8.0);

//wait for the system to receive the qubit and put

//a message on the queue

while (sys ->isMessageQueueEmpty ()) {

}

//get the map address of the received qubit

int address = sys ->nextMessage ();

//store the received qubit in the scratch vector

q.push_back(qm->getQubit(address));

//if we haven ’t yet established a callback connection to the

//client , do so now

if (peerIP == "") {

peerIP = q.at(i)->origin.peerIP;

peerServicePort = q.at(i)->origin.peerServicePort;

csc = new QuantumChannel :: ChannelService_client(

peerIP , peerServicePort);

}

}

// rotate the returned qubits and send back

for (i = 0; i < KAK_KEY_SIZE; i++) {

www.manaraa.com

99

// create a rotational gate

Ry r = Ry(rotations.at(i));

//apply the rotational gate

q.at(i)->applyMatrix(r);

//send the qubit

csc ->SendQubit(q.at(i));

}

// receive qubits which our peer has counter -rotated

for (i = 0; i < KAK_KEY_SIZE; i++) {

//wait for the system to receive the qubit and put

//a message on the queue

while (sys ->isMessageQueueEmpty ()) {

}

//get the map address of the received qubit

int address = sys ->nextMessage ();

//store the received qubit in the scratch vector

q.at(i) = qm->getQubit(address);

}

//counter -rotate the returned qubits and measure

for (i = 0; i < KAK_KEY_SIZE; i++) {

// create the counter -rotational gate for this qubit

Ry r = Ry(-1 * rotations.at(i));

//apply the counter -rotational gate

q.at(i)->applyMatrix(r);

// measure the qubit

string data = to_string(q.at(i)->measure ());

//this part is outside of Kak ’s protocol

//we’re going to send the results to our peer

//and they ’ll count how many errors were introduced

csc ->SendClassicData(data);

}

//stop the server thread

sys ->stopServer ();

}

}

	Abstract
	Copyright
	Dedication
	Author’s Acknowledgement
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Quantum Information Representation
	Quantum Fundamentals
	Representing Qubits
	Measurement & No-cloning
	Entanglement

	Physical Implementations
	Ion Traps & Electron Spin
	Nuclear Magnetic Resonance
	Photons

	Quantum Cryptography & Communication Protocols
	Protocols
	BB84
	E91
	Kak06
	Quantum Teleportation

	Error Detection & Correction
	Kraus Operators
	Amplitude Damping
	Bit- & Phase-Flip Errors
	Rotational Errors

	Quantum Simulation
	Asynchronous Operations on Entangled Qubits
	Linear Extension Operations
	Asynchronous Operations

	QooSim Implementation Details
	Previous Work
	QooSim
	Major Structures
	Iteration 1 - Registers & Nodes
	Iteration 2 - Registers & Qubits
	Iteration 3 - Qubits & State Vectors

	QooSim in Practice
	BB84
	Kak06

	Conclusions
	Future Work

	Reference
	Source Code Listings
	StateVector
	Teleportation Runnable
	Kak06 Runnable

